A188153 Number of 8-step self-avoiding walks on an n X n square summed over all starting positions.
0, 0, 112, 1976, 8160, 19312, 35024, 55104, 79528, 108296, 141408, 178864, 220664, 266808, 317296, 372128, 431304, 494824, 562688, 634896, 711448, 792344, 877584, 967168, 1061096, 1159368, 1261984, 1368944, 1480248, 1595896, 1715888, 1840224
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: 0 0 0 0 0 7 8 0 1 4 5 0 6 7 8 0 6 7 0 0 8 7 6 1 0 6 3 2 2 3 6 7 5 4 0 0 5 8 0 0 0 0 5 2 0 5 4 1 0 0 0 8 0 3 0 0 4 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 1 2 0 0 3 2 1 0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A188147.
Formula
Empirical: a(n) = 2172*n^2 - 12500*n + 16096 for n>6.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: 8*x^3*(2 + x)*(7 + 99*x + 111*x^2 - 15*x^3 - 18*x^4 - 3*x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9.
(End)
Comments