A188160 For an unordered partition of n with k parts, remove 1 from each part and append the number k to get a new partition until a partition is repeated. a(n) gives the maximum steps to reach a period considering all unordered partitions of n.
0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 12, 12, 13, 18, 20, 20, 17, 18, 21, 28, 30, 30, 24, 24, 25, 32, 40, 42, 42, 35, 31, 32, 36, 45, 54, 56, 56, 48, 40, 40, 41, 50, 60, 70, 72, 72, 63, 54, 49, 50, 55, 66, 77, 88, 90, 90, 80, 70, 60, 60, 61
Offset: 1
Keywords
Examples
For k=6 and 0 <= j <= 1: a(19)=21; a(20)=28; a(21)=30; a(22)=30; a(23)=24; a(24)=24; a(25)=25. For n=4: (1+1+1+1)->(4)->(3+1)->(2+2)->(2+1+1)--> a(4)=4. For n=5: (1+1+1+1+1)->(5)->(4+1)->(3+2)->(2+2+1)->(3+1+1)-->a(5)=5.
References
- R. Baumann LOG IN, 4 (1987)
- Halder, Heise Einführung in Kombinatorik, Hanser Verlag (1976) 75 ff.
Links
- Ethan Akin, Morton Davis, Bulgarian solitaire, Am. Math. Monthly 92 (4) (1985) 237-250
- J. Brandt, Cycles of partitions, Proc. Am. Math. Soc. 85 (3) (1982) 483-486
Programs
-
Maple
A188160 := proc(n) local k,j,T ; if n <= 2 then return n-1 ; end if; for k from 0 do T := k*(k+1) /2 ; if n = T and k >= 1 then return k*(k-1) ; end if; if k>=4 then j := T-1-n ; if j>= 0 and j <= (k-4)/2 then return k^2-k-2-(k+1)*j ; end if; j := n-T-1 ; if j>= 0 and j <= (k-4)/2 then return k^2-k-k*j ; end if; end if; if k >= 2 then j := n-(k^2+2*k-(k mod 2))/2 ; if j>=0 and j <= 1 then return (k^2+2*k-(k mod 2))/2+j end if; end if; end do: return -1 ; end proc: # R. J. Mathar, Apr 22 2011
Formula
a((k^2+k-2)/2-j) = k^2-k-2-(k+1)*j with 0<=j<=(k-4)/2 and 4<=k.
a((k^2+k+2)/2+j) = k^2-k-k*j with 0<=j<=(k-4)/2 and 4<=k,
a((k^2+2*k-(k mod 2))/2+j) = (k^2+2*k-(k mod 2))/2+j with 0 <= j <= 1 and 2 <= k.
a(T(k)) = 2*T(k-1) = k^2-k with 1 <= k for the triangular numbers T(k)=A000217(k).
Comments