cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188200 Base-9 Keith numbers.

Original entry on oeis.org

17, 21, 25, 42, 67, 81, 96, 101, 149, 162, 173, 202, 243, 303, 324, 346, 404, 405, 486, 519, 567, 648, 692, 732, 857, 1189, 1464, 2199, 4398, 11644, 18325, 33774, 34453, 37999, 70348, 92664, 141557, 256820, 263412, 326778, 349484, 526824, 535754, 579708, 1461987, 1519308, 1621052, 2688905, 4650964, 8027458, 8198651, 8374956, 13504910, 17858551, 20002383, 55640285, 154513633, 170801638
Offset: 1

Views

Author

T. D. Noe, Mar 24 2011

Keywords

Comments

Keith numbers are described in A007629. Base 9 appears to be unusually rich in Keith numbers. Why?

Examples

			101 is here because, in base 9, 101 is 122 and applying the Keith iteration to this number produces the numbers 1, 2, 2, 5, 9, 16, 30, 55, 101. Note that the multiples 202, 303, and 404 are here also.
		

Crossrefs

Cf. A007629 (base 10), A162724 (base 2), A187713 (base 5), A188195-A188199.

Programs

  • Mathematica
    IsKeith[n_,b_] := Module[{d, s, k}, d = IntegerDigits[n, b]; s = Total[d]; k = 1; While[AppendTo[d, s]; s = 2 s - d[[k]]; s < n, k++]; s == n]; Select[Range[3,10^5], IsKeith[#,9]&]