A188203 G.f.: exp( Sum_{n>=1} A188202(n)*x^n/n ) where A188202(n) = [x^n] (1 + 2^n*x + x^2)^n.
1, 2, 11, 206, 17586, 6878604, 11551087875, 80650796495414, 2307974943300931286, 268728588584911887188180, 126776477973814964972206209838, 241684409250478693507166916367088620
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 11*x^2 + 206*x^3 + 17586*x^4 + 6878604*x^5 +... The l.g.f. of A188202 begins: log(A(x)) = 2*x + 18*x^2/2 + 560*x^3/3 + 68614*x^4/4 + 34210752*x^5/5 +... The coefficients of x^n in (1 + 2^n*x + x^2)^n begin: n=1: [1, (2), 1]; n=2: [1, 8, (18), 8, 1]; n=3: [1, 24, 195, (560), 195, 24, 1]; n=4: [1, 64, 1540, 16576, (68614), 16576, 1540, 64, 1]; n=5: [1, 160, 10245, 328320, 5273610, (34210752), 5273610, ...]; ... where the central coefficients form the logarithmic derivative, A188202.
Programs
-
PARI
{a(n)=polcoeff(exp(sum(k=1,n,polcoeff((1+2^k*x+x^2+x*O(x^k))^k,k)*x^k/k)+x*O(x^n)),n)}
Comments