cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188236 T(n,k)=Number of nondecreasing arrangements of n numbers in -(n+k-2)..(n+k-2) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 15, 1, 5, 12, 30, 58, 1, 6, 17, 52, 119, 245, 1, 7, 24, 81, 221, 527, 1082, 1, 8, 31, 121, 374, 1019, 2395, 5020, 1, 9, 40, 172, 598, 1818, 4818, 11376, 24040, 1, 10, 49, 234, 903, 3047, 8964, 23522, 55368, 118154, 1, 11, 60, 311, 1317, 4859
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Table starts
......1......1......1.......1.......1.......1.......1........1........1
......2......3......4.......5.......6.......7.......8........9.......10
......4......7.....12......17......24......31......40.......49.......60
.....15.....30.....52......81.....121.....172.....234......311......403
.....58....119....221.....374.....598.....903....1317.....1852.....2540
....245....527...1019....1818....3047....4859....7435....10994....15791
...1082...2395...4818....8964...15696...26123...41748....64370....96346
...5020..11376..23522...45225...81981..141519..234413...374820...581280
..24040..55368.117209..231596..432491..769915.1316060..2171675..3475284
.118154.275735.594789.1202495.2302608.4209720.7395049.12546170.20642874

Examples

			Some solutions for n=6 k=4
.-7...-8...-5...-8...-5...-7...-7...-3...-8...-8...-6...-6...-5...-7...-6...-5
.-4...-8...-3...-5...-5...-7...-4...-3...-4...-8...-6...-4...-4...-4...-2...-5
..0...-4...-2...-4...-1...-1....1....1....0....0....2...-4....1....0...-1....1
..2....6....0....3....1....0....2....1....3....2....2....2....1....1...-1....1
..3....7....4....7....3....7....2....2....4....7....3....4....3....3....3....4
..6....7....6....7....7....8....6....2....5....7....5....8....4....7....7....4
		

Crossrefs

Row 3 is A074148(n+1)