cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188267 Coefficient of x^n in the series 1/(1-x*F(1/2,1/2;1;16x)), where F(a1,a2;b;x) is the hypergeometric series.

Original entry on oeis.org

1, 1, 5, 45, 501, 6161, 80189, 1082649, 14996021, 211674805, 3031568597, 43920006709, 642265758053, 9465144429045, 140400306506101, 2094220410467877, 31387767877371013, 472406259202624889, 7136241394473619133, 108153547914919084017
Offset: 0

Views

Author

Emanuele Munarini, Mar 30 2011

Keywords

Comments

Equivalently, coefficient of x^n in the series 1/(1-(2x/Pi)*K(16x)), where K(x) = (Pi/2)*F(1/2,1/2;1;x) is the complete elliptic integral (defined as in Mathematica, i.e. with x instead of x^2).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-(2x/Pi)EllipticK[16x]),{x,0,100}],x]
    a[0] = 1; Flatten[{1, Table[a[n+1] = Sum[Binomial[2*k, k]^2*a[n-k], {k, 0, n}], {n, 0, 20}]}] (* Vaclav Kotesovec, Sep 28 2019 *)

Formula

Recurrence: a(n+1) = sum(binomial(2k,k)^2*a(n-k),k=0..n).
G.f.: 1/(1 - x/AGM(sqrt(1 - 16*x), 1)). - Vaclav Kotesovec, Sep 30 2019
a(n) ~ Pi * 2^(4*n + 4) / (n * (log(n) - 16*Pi)^2) * (1 - 2*(gamma + 4*log(2)) / (log(n) - 16*Pi) + (3*gamma^2 - Pi^2/2 + 24*gamma*log(2) + 48*log(2)^2) / (log(n) - 16*Pi)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 01 2019

A328128 G.f.: K(4*sqrt(x)) / E(4*sqrt(x)), where E(), K() are complete elliptic integrals.

Original entry on oeis.org

1, 8, 80, 896, 10784, 136448, 1790720, 24160256, 333053504, 4670325248, 66403043840, 954931245056, 13863783325184, 202898094829568, 2989879597076480, 44320135356317696, 660370844304147584, 9884176356444627968, 148535796374189204480, 2240105752104228970496
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2019

Keywords

Comments

Convolution of A002894 and A188266.

Crossrefs

Programs

  • Maple
    seq(coeff(series(EllipticK(4*sqrt(x))/EllipticE(4*sqrt(x)), x, 21), x, n), n = 0..20);
  • Mathematica
    CoefficientList[Series[EllipticK[16*x]/EllipticE[16*x], {x, 0, 20}], x]

Formula

a(n) ~ 2^(4*n-1) / n.
Showing 1-2 of 2 results.