A188285 Riordan matrix ( (1-2x)/(1-2x-x^2), (x-2x^2)/(1-2x-x^2) ).
1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 5, 4, 3, 0, 1, 12, 11, 6, 4, 0, 1, 29, 28, 18, 8, 5, 0, 1, 70, 72, 48, 26, 10, 6, 0, 1, 169, 184, 130, 72, 35, 12, 7, 0, 1, 408, 469, 348, 204, 100, 45, 14, 8, 0, 1, 985, 1192, 927, 568, 295, 132, 56, 16, 9, 0, 1, 2378, 3022, 2456, 1571, 850, 404, 168, 68, 18, 10, 0, 1, 5741, 7644, 6477, 4312, 2430, 1200, 532, 208, 81, 20, 11, 0, 1
Offset: 0
Examples
Triangle begins: 1 0, 1 1, 0, 1 2, 2, 0, 1 5, 4, 3, 0, 1 12, 11, 6, 4, 0, 1 29, 28, 18, 8, 5, 0, 1 70, 72, 48, 26, 10, 6, 0, 1 169, 184, 130, 72, 35, 12, 7, 0, 1 408, 469, 348, 204, 100, 45, 14, 8, 0, 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..495
Programs
-
Maple
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, n -> (-1)^(n+1)*A215936(n)); # Peter Luschny, Oct 19 2022
-
Mathematica
Flatten[Table[Sum[Pochhammer[i,n-k-2i]/(n-k-2i)!Binomial[i+k,k]2^(n-k-2i),{i,0,(n-k)/2}],{n,0,12},{k,0,n}],1]
-
Maxima
create_list(sum(pochhammer(i,n-k-2*i)/(n-k-2*i)!*binomial(i+k,k)*2^(n-k-2*i),i,0,(n-k)/2),n,0,12,k,0,n);
Formula
T(n,k) = sum(M(i,n-k-2i)*Binomial(i+k,k)*2^{n-k-2i},i=0..floor((n-k)/2)), where M(n,k)=n(n+1)(n+2)...(n+k-1)/k!.
Recurrence: T(n+2,k+1) = 2 T(n+1,k+1) + T(n+1,k) + T(n,k+1) - 2 T(n,k)
Comments