cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188381 Negabinary Keith numbers.

Original entry on oeis.org

2, 3, 4, 7, 9, 13, 16, 36, 55, 64, 162, 256, 458, 1024, 1829, 4096, 7316, 15119, 16384, 18970, 37702, 37723, 45171, 60476, 65536, 84506, 262144, 277263, 1048576, 1109052, 1722002, 2160570, 4194304, 10549178, 12699958, 15084573, 16777216, 31921069, 67108864
Offset: 1

Views

Author

Alonso del Arte, Mar 29 2011

Keywords

Comments

Keith numbers are described in A007629. All powers of 4 appear. However, 2 is the only number of the form 2^n with n odd that appears in the sequence. That's because in negabinary, such numbers are represented as 11 followed by n 0's, and that leads to the sequence 1, 1, 0, ... , 0, 2, 3, 5, 10, 20, 40, 80, 160, ... up to 5(2^(n - 2)), and 5(2^(n - 2)) > 2^(n - 1). (See A020714).

Crossrefs

Programs

  • Mathematica
    (* First run the program from A039724 to define ToNegaBases *) keithFromListQ[n_Integer, digits_List] := Module[{seq = digits, curr = digits[[-1]], ord = Length[digits]}, While[curr < n, curr = Plus@@Take[seq, -ord]; AppendTo[seq, curr]]; Return[seq[[-1]] == n]]; Select[Range[2, 32768], keithFromListQ[#, IntegerDigits[ToNegaBases[#, 2]]] &]

Extensions

a(33)-a(39) from Amiram Eldar, Jan 29 2020