A020714
a(n) = 5 * 2^n.
Original entry on oeis.org
5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..238
- John Elias, Illustration: Alternating Tetrahedrons of Tetrahedrons
- Tanya Khovanova, Recursive Sequences.
- Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1003.
- Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (2).
Row sums of (4, 1)-Pascal triangle
A093561.
Row sums of (9, 1)-Pascal triangle
A093644.
Row sums of (1, 4)-Pascal triangle
A095666 (with leading 4).
A007629
Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers).
Original entry on oeis.org
14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285, 34348, 55604, 62662, 86935, 93993, 120284, 129106, 147640, 156146, 174680, 183186, 298320, 355419, 694280, 925993, 1084051, 7913837, 11436171, 33445755, 44121607
Offset: 1
197 is a term since sequence {b(i)} (see Comments) is A186830 = { 1, 9, 7, 17, 33, 57, 107, 197, ... }, which contains 197.
- Charles Ashbacher, J. Rec. Math., Vol. 21, No. 4 (1989), p. 310.
- Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 197, p. 59, Ellipses, Paris 2008.
- Mike Keith, Repfigit Numbers, J. Recreational Math., Vol. 19, No. 2 (1987), pp. 41-42.
- Clifford A. Pickover, All Known Replicating Fibonacci Digits Less Than One Billion, J. Recreational Math., Vol. 22, No. 3, p. 176, 1990.
- Clifford A. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 229.
- Clifford A. Pickover, Wonders of Numbers, "Looping Replicating Fibonacci digits", pp. 174-5, OUP 2000.
- K. Sherriff, Computing Replicating Fibonacci Digits, J. Recreational Math., Vol. 26, No. 3, p. 191, 1994.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, see p. 71.
- N. J. A. Sloane, Table of n, a(n) for n = 1..94 [Taken from first Keith link below.]
- Rüdeger Baumann, Sep-Zahlen or Sep-Numbers, DERIVE Newsletter, #53 (2004), p. 33.
- Jhon J. Bravo, Sergio Guzmán, and Florian Luca, Repdigit Keith numbers, Lithuanian Mathematical Journal, Vol. 53, No. 2 (April 2013), pp. 143-148.
- Edmund Copeland and Brady Haran, Keith Numbers, Numberphile video (2012).
- Mike Keith, Keith numbers.
- Mike Keith, Determination of All Keith Numbers Up to 10^19.
- Mike Keith, Power-sum numbers, J. Recreational Mathematics, Vol. 18, No. 4 (1986), pp. 275-278. (Annotated scanned copy)
- Martin Klazar and Florian Luca, Counting Keith numbers, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.2.
- Madras Math's Amazing Number Facts, Repfigits.
- Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
- Eric Weisstein's World of Mathematics, Keith Number.
- Wikipedia, Keith number.
Cf.
A188201 (least base-n Keith number >= n).
-
import Data.Char (digitToInt)
a007629 n = a007629_list !! (n-1)
a007629_list = filter isKeith [10..] where
isKeith n = repfigit $ reverse $ map digitToInt $ show n where
repfigit ns = s == n || s < n && (repfigit $ s : init ns) where
s = sum ns
-- Reinhard Zumkeller, Nov 04 2010, Mar 31 2011
-
isA007629 := proc(n)
local L,t,a ;
if n < 10 then
return false;
end if;
L := ListTools[Reverse](convert(n,base,10)) ;
t := nops(L) ;
while true do
a := add(op(-i,L),i=1..t) ;
L := [op(L),a] ;
if a > n then
return false;
elif a = n then
return true;
end if;
end do:
end proc:
for n from 1 do
if isA007629(n) then
printf("%d,\n",n);
end if;
end do: # R. J. Mathar, Jan 12 2016
-
keithQ[n_Integer] := Module[{b = IntegerDigits[n], s, k = 0}, s = Total[b]; While[s < n, AppendTo[b, s]; k++; s = 2*s - b[[k]]]; s == n]; Select[Range[10, 100000], keithQ] (* T. D. Noe, Mar 15 2011 *)
nxt[n_]:=Rest[Flatten[Join[{n,Total[n]}]]]; repfigitQ[m_]:=MemberQ[ NestWhileList[ nxt,IntegerDigits[m],Max[#]<=m&][[All,-1]],m]; Select[ Range[10,45*10^6],repfigitQ] (* Harvey P. Dale, Sep 02 2016 *)
keithQ[n_, e_] := Last[NestWhile[Rest[Append[#, Apply[Plus, #]]]&, IntegerDigits[n^e], Last[#]9
a007629[n_] := Select[Range[10, n], keithQ[#, 1]&]
a007629[45*10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
-
is(n)=if(n<14,return(0));my(v=digits(n),t=#v);while(v[#v]Charles R Greathouse IV, Feb 01 2013
-
A007629_list = []
for n in range(10,10**9):
x = [int(d) for d in str(n)]
y = sum(x)
while y < n:
x, y = x[1:]+[y], 2*y-x[0]
if y == n:
A007629_list.append(n) # Chai Wah Wu, Sep 12 2014
12th term corrected from 2508 to 2580, Aug 15 1997
Showing 1-2 of 2 results.
Comments