A050235
a(n) is the number of n-digit Keith numbers A007629.
Original entry on oeis.org
0, 6, 2, 9, 7, 10, 2, 3, 2, 0, 2, 4, 2, 3, 3, 3, 5, 3, 5, 3, 1, 1, 3, 1, 1, 3, 7, 1, 2, 5, 2, 4, 6, 3
Offset: 1
a(27)-a(31) from Eric W. Weisstein from computations by Daniel Lichtblau
Eric W. Weisstein, Jun 23 2009
A246544
Consider the aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
Original entry on oeis.org
6, 21, 28, 85, 496, 2133, 8128, 19521, 77125, 97273, 176661, 615281, 4948133, 33550336, 68353213, 129127041, 8589869056
Offset: 1
Aliquot parts of 85 are 1, 5 and 17:
1 + 5 + 17 = 23;
5 + 17 + 23 = 45;
17 + 23 + 45 = 85.
Aliquot parts of 19521 are 1, 3, 9, 27, 81, 241, 723, 2169 and 6507:
1 + 3 + 9 + 27 + 81 + 241 + 723 + 2169 + 6507 = 9761;
3 + 9 + 27 + 81 + 241 + 723 + 2169 + 6507 + 9761 = 19521.
-
with(numtheory): P:=proc(q,h)
local a,b,k,n,t,v; v:=array(1..h);
for n from 2 to q do if not isprime(n) then
a:=sort([op(divisors(n))]); b:=nops(a)-1;
for k from 1 to b do v[k]:=a[k]; od;
t:=b+1; v[t]:=add(v[k],k=1..b);
while v[t]
-
A246544 = {};
For[n = 4, n <= 1000000, n++,
If[PrimeQ[n], Continue[]];
a = Most[Divisors[n]];
sum = Total[a];
While[sum < n, sum = Total[a = Join[Rest[a], {sum}]]];
If[sum == n, AppendTo[A246544, n]];
]; A246544 (* Robert Price, Sep 08 2019 *)
-
lista(nn) = {forcomposite(n=1, nn, d = divisors(n); v = vector(#d-1, i, d[i]); vs = sum(i=1, #v, v[i]); ind = 1; while (vs < n, v = concat(v, vs); vs += vs - v[ind]; ind++;); if (vs == n, print1(n, ", ")););} \\ Michel Marcus, Aug 29 2014
-
import math
def divs(n):
large_divisors = []
for i in range(1, int(math.sqrt(n) + 1)):
if n % i == 0:
yield i
if i != n // i:
large_divisors.insert(0, n / i)
for divisor in large_divisors:
yield divisor
a = 2
while a < 1000000000:
q = list(divs(a))[:-1]
r = sum(q)
if r > a or len(q) == 1:
pass
elif r == a:
print(a)
else:
c = 1
while r < a:
q.append(r)
r = sum(q[c:])
c += 1
if r == a:
print(a)
a += 1
# David Consiglio, Jr., Sep 09 2014
-
from sympy import divisors, isprime
A246544_list = []
for n in range(2,10**5):
if not isprime(n):
x = divisors(n)
x.pop()
y = sum(x)
while y < n:
x, y = x[1:]+[y], 2*y-x[0]
if y == n:
A246544_list.append(n)
# Chai Wah Wu, Nov 03 2014
A282757
2*n analog to Keith numbers.
Original entry on oeis.org
5, 9, 10, 15, 19, 20, 25, 28, 30, 35, 40, 45, 47, 66, 88, 132, 198, 2006, 2740, 4012, 4419, 13635, 56357, 338540, 354164, 419966, 441972, 685704, 803678, 1528803, 1844810, 9127005, 12305952, 14315686, 14650155, 15828353, 17838087, 22618003, 37826729, 71644613
Offset: 1
2*28 = 56 :
5 + 6 = 11;
6 + 11 = 17;
11 + 17 = 28.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[2 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
A282765
10*n analog to Keith numbers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 19, 28, 56, 176, 904, 3347, 4795, 5301, 9775, 10028, 16165, 16715, 35103, 49693, 111039, 191103, 370287, 439385, 845772, 1727706, 1836482, 3631676, 3767812, 4363796, 4499932, 5351605, 6940437, 20090073, 28246243, 38221997, 60220332
Offset: 1
10*14 = 140:
1 + 4 + 0 = 5;
4 + 0 + 5 = 9;
0 + 5 + 9 = 14.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[10 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
A274769
Square analog to Keith numbers.
Original entry on oeis.org
1, 9, 37, 40, 43, 62, 70, 74, 160, 1264, 1952, 2847, 12799, 16368, 16584, 42696, 83793, 97415, 182011, 352401, 889871, 925356, 1868971, 1881643, 3661621, 7645852, 15033350, 21655382, 63288912, 88192007, 158924174, 381693521, 792090500, 2025078249, 2539401141
Offset: 1
1264^2 = 1597696 :
1 + 5 + 9 + 7 + 6 + 9 + 6 = 43;
5 + 9 + 7 + 6 + 9 + 6 + 43 = 85;
9 + 7 + 6 + 9 + 6 + 43 + 85 = 165;
7 + 6 + 9 + 6 + 43 + 85 + 165 = 321;
6 + 9 + 6 + 43 + 85 + 165 + 321 = 635;
9 + 6 + 43 + 85 + 165 + 321 + 635 = 1264.
-
with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h);
for n from 1 to q do b:=n^2; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^2)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[n^2], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
(* function keithQ[ ] is defined in A007629 *)
a274769[n_] := Join[{1, 9}, Select[Range[10, n], keithQ[#, 2]&]]
a274769[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A274770
Cube analog to Keith numbers.
Original entry on oeis.org
1, 8, 17, 18, 26, 27, 44, 55, 63, 80, 105, 187, 326, 776, 1095, 2196, 6338, 13031, 13131, 25562, 27223, 70825, 140791, 553076, 632489, 1402680, 1404312, 3183253, 11311424, 50783292, 51231313, 182252596, 255246098, 522599548, 1180697763, 2025114819, 2137581414
Offset: 1
776^3 = 467288576 :
4 + 6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 = 53;
6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 = 102;
7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 = 198;
2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 = 389;
8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 + 389 = 776.
-
with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h);
for n from 1 to q do b:=n^3; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^3)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a274770[n_] := Join[{1, 8}, Select[Range[10, n], keithQ[#, 3]&]]
a274770[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A263534
Consider the 10's complements mod 10 of the digits of a number k. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to k.
Original entry on oeis.org
29, 76, 157, 174, 191, 475, 713, 1129, 1961, 3286, 4424, 7812, 8973, 19978, 24317, 35845, 37041, 51712, 68022, 166838, 443275, 444247, 445219, 509439, 706317, 1189312, 1933197, 2686010, 10809303, 55558901, 58338037, 257990335, 504050156, 839186880
Offset: 1
For 29, the 10's complements of its digits are 8, 1. Then:
8 + 1 = 9;
1 + 9 = 10;
9 + 10 = 19;
10 + 19 = 29.
For 475, the 10's complements of its digits are 6, 3, 5. Then:
6 + 3 + 5 = 14;
3 + 5 + 14 = 22;
5 + 14 + 22 = 41;
14 + 22 + 41 = 77;
22 + 41 + 77 = 140;
41 + 77 + 140 = 258;
77 + 140 + 258 = 475.
-
with(numtheory): P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h);
for n from 10 to q do b:=ilog10(n)+1; c:=n; a:=[];
for k from 1 to b do a:=[(10-c) mod 10,op(a)]; c:=trunc(c/10); od;
for k from 1 to b do v[k]:=a[k]; od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
Select[Range[10^5], Function[{m, n}, Last@ NestWhile[Append[#, Total@ Take[#, -m]] &, Flatten[{#, Total@ #}] &[IntegerDigits[n] /. d_?Positive :> 10 - d], Last@ # < n &, 1, 10^2] == n] @@ {IntegerLength@#, #} &] (* Michael De Vlieger, Mar 09 2018 *)
Name clarified, some terms and Maple code corrected by
Paolo P. Lava, Mar 08 2018
A281915
4th power analog of Keith numbers.
Original entry on oeis.org
1, 7, 19, 20, 22, 25, 28, 36, 77, 107, 110, 175, 789, 1528, 1932, 3778, 5200, 7043, 8077, 38855, 41234, 44884, 49468, 204386, 763283, 9423515, 73628992, 87146144, 146124072, 146293356, 326194628, 1262293219, 1321594778, 2767787511, 11511913540, 12481298961, 13639550655
Offset: 1
175^4 = 937890625:
9 + 3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 = 49;
3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 = 89;
7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 + 89 = 175.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281915[n_] := Join[{1, 7}, Select[Range[10, n], keithQ[#, 4]&]]
a281915[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A281916
5th power analog of Keith numbers.
Original entry on oeis.org
1, 28, 35, 36, 46, 51, 99, 109, 191, 239, 476, 491, 1022, 1126, 1358, 1362, 15156, 21581, 44270, 63377, 100164, 375830, 388148, 2749998, 5215505, 10158487, 81082532, 87643314, 410989134, 1485204944, 3496111364, 3829840893, 15889549579, 16107462404, 16766005098, 17608009898
Offset: 1
109^5 = 15386239549:
1 + 5 + 3 + 8 + 6 + 2 + 3 + 9 + 5 + 4 + 9 = 55;
5 + 3 + 8 + 6 + 2 + 3 + 9 + 5 + 4 + 9 + 55 = 109.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281916[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 5]&]]
a281916[5*10^5] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A281917
6th power analog of Keith numbers.
Original entry on oeis.org
1, 18, 45, 54, 64, 125, 218, 246, 935, 1125, 6021, 6866, 7887, 40210, 89330, 457625, 577655, 613385, 640118, 5200210, 6809148, 7293243, 10013591, 50980917, 216864574, 885859983, 4556794863, 4939169289, 8580755055, 8672110451, 18562634876, 18992278338, 36013476739
Offset: 1
125^6 = 3814697265625:
3 + 8 + 1 + 4 + 6 + 9 + 7 + 2 + 6 + 5 + 6 + 2 + 5 = 64;
8 + 1 + 4 + 6 + 9 + 7 + 2 + 6 + 5 + 6 + 2 + 5 + 64 = 125.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[n_, e_] is defined in A007629 *)
a281917[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 6]&]]
a281917[10^4] (* Hartmut F. W. Hoft, Jun 03 2021 *)
Showing 1-10 of 63 results.
Comments