A282765 10*n analog to Keith numbers.
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 19, 28, 56, 176, 904, 3347, 4795, 5301, 9775, 10028, 16165, 16715, 35103, 49693, 111039, 191103, 370287, 439385, 845772, 1727706, 1836482, 3631676, 3767812, 4363796, 4499932, 5351605, 6940437, 20090073, 28246243, 38221997, 60220332
Offset: 1
Examples
10*14 = 140: 1 + 4 + 0 = 5; 4 + 0 + 5 = 9; 0 + 5 + 9 = 14.
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h); for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[10 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
Comments