A282762 7*n analog to Keith numbers.
3, 6, 9, 12, 25, 29, 33, 58, 62, 66, 70, 87, 91, 95, 99, 124, 128, 150, 152, 165, 178, 191, 204, 217, 592, 801, 1184, 3860, 15728, 59800, 117711, 157701, 230720, 270737, 496085, 795918, 869366, 954639, 1549319, 1826773, 3169440, 3170466, 3973793, 3974819, 3975845, 4012718, 4013744, 5120160, 5653357, 5978943
Offset: 1
Examples
7*25 = 175: 1 + 7 + 5 = 13; 7 + 5 + 13 =25.
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h); for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[7 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
Comments