cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A282757 2*n analog to Keith numbers.

Original entry on oeis.org

5, 9, 10, 15, 19, 20, 25, 28, 30, 35, 40, 45, 47, 66, 88, 132, 198, 2006, 2740, 4012, 4419, 13635, 56357, 338540, 354164, 419966, 441972, 685704, 803678, 1528803, 1844810, 9127005, 12305952, 14315686, 14650155, 15828353, 17838087, 22618003, 37826729, 71644613
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 2*n digits to reach n.
Consider the digits of 2*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			2*28 = 56 :
5 + 6 = 11;
6 + 11 = 17;
11 + 17 = 28.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[2 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)

A282766 n/2 analog of Keith numbers.

Original entry on oeis.org

50, 642, 1284, 1926, 2292, 5088, 29828, 42922, 53046, 95968, 512050, 1043160, 1723714, 14819056, 154860206, 159251186, 752516578, 946218018, 54728972948
Offset: 1

Views

Author

Paolo P. Lava, Feb 27 2017

Keywords

Comments

Like Keith numbers but starting from n/2 digits to reach n.
Consider the digits of n/2. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
If it exists, a(20) > 10^12. - Lars Blomberg Mar 13 2017

Examples

			642/2 = 321:
3 + 2 + 1 = 6;
2 + 1 + 6 = 9;
1 + 6 + 9 = 16;
6 + 9 + 16 = 31;
9 + 16 + 31 = 56;
16 + 31 + 56 = 103;
31 + 56 + 103 = 190;
56 + 103 + 190 = 349;
103 + 190 + 349 = 642.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]
    				
  • Mathematica
    With[{n = 2}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)

Extensions

a(15)-a(19) from Lars Blomberg, Mar 13 2017

A282769 n/7 analog of Keith numbers.

Original entry on oeis.org

301, 602, 1113, 4942, 478205, 23942940, 47885880, 178114489749
Offset: 1

Views

Author

Paolo P. Lava, Feb 27 2017

Keywords

Comments

Like Keith numbers but starting from n/7 digits to reach n.
Consider the digits of n/7. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
If it exists, a(9) > 10^12. - Lars Blomberg Mar 07 2017

Examples

			1113/7 = 159:
    1 +   5 +   9 =   15;
    5 +   9 +  15 =   29;
    9 +  15 +  29 =   53;
   15 +  29 +  53 =   97;
   29 +  53 +  97 =  179;
   53 +  97 + 179 =  329;
   97 + 179 + 329 =  605;
  179 + 329 + 605 = 1113.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]
    				
  • Mathematica
    With[{n = 7}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)

Extensions

a(8) from Lars Blomberg, Mar 07 2017

A282768 n/5 analog of Keith numbers.

Original entry on oeis.org

55, 110, 165, 220, 275, 330, 385, 440, 495, 530, 47270, 119710, 685385, 21526000, 6055017240
Offset: 1

Views

Author

Paolo P. Lava, Feb 27 2017

Keywords

Comments

Like Keith numbers but starting from n/5 digits to reach n.
Consider the digits of n/5. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
If it exists, a(16) > 10^12. - Lars Blomberg Mar 07 2017

Examples

			530/5 = 106:
   1 +   0 +   6 =   7;
   0 +   6 +   7 =  13;
   6 +   7 +  13 =  26;
   7 +  13 +  26 =  46;
  13 +  26 +  46 =  85;
  26 +  46 +  85 = 157;
  46 +  85 + 157 = 288;
  85 + 157 + 288 = 530.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]
    				
  • Mathematica
    With[{n = 5}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)

Extensions

a(15) from Lars Blomberg, Mar 07 2017

A282758 3*n analog to Keith numbers.

Original entry on oeis.org

7, 9, 14, 19, 21, 28, 38, 53, 54, 76, 92, 124, 1299, 18185, 20468, 31871, 32054, 37903, 128200, 152057, 175539, 193399, 214631, 303677, 1806425, 3250457, 3616693, 7870170, 10793441, 12047403, 13781464, 15035426, 18663611, 19917573, 22905596, 46531972, 101743590
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 3*n digits to reach n.
Consider the digits of 3*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			3*28 = 84:
8 + 4 = 12;
4 + 12 = 16;
12 + 16 = 28.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[3 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017 *)

A282759 4*n analog to Keith numbers.

Original entry on oeis.org

3, 6, 9, 12, 19, 29, 40, 787, 1679, 2137, 2508, 2728, 5016, 7524, 12773, 36183, 46116, 192952, 246916, 681538, 1316065, 4826672, 7571204, 8709926, 9716827, 24922317
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 4*n digits to reach n.
Consider the digits of 4*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			4*29 = 116:
1 + 1 + 6 = 8;
1 + 6 + 8 = 15;
6 + 8 + 15 = 29.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[4 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017 *)

A282760 5*n analog to Keith numbers.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 19, 28, 56, 147, 566, 1301, 4288, 8576, 13088, 119396, 518800, 634825, 654780, 993476, 2109420, 3034105, 6466772, 17838948, 80148824
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 5*n digits to reach n.
Consider the digits of 5*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			5*14 = 70:
7 + 0 = 7;
0 + 7 = 7;
7 + 7 = 14.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[5 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]];
    s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)

A282761 6*n analog to Keith numbers.

Original entry on oeis.org

9, 23, 85, 88, 208, 953, 12339, 122420, 251925, 286400, 467608, 1207360, 1308519, 1537214, 1638373, 1844108, 2314739, 2736742, 9331102, 11692851, 28349534, 85403569
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 6*n digits to reach n.
Consider the digits of 6*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			6*23 = 138:
1 + 3 + 8 = 12;
3 + 8 + 12 = 23.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[6 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)

A282762 7*n analog to Keith numbers.

Original entry on oeis.org

3, 6, 9, 12, 25, 29, 33, 58, 62, 66, 70, 87, 91, 95, 99, 124, 128, 150, 152, 165, 178, 191, 204, 217, 592, 801, 1184, 3860, 15728, 59800, 117711, 157701, 230720, 270737, 496085, 795918, 869366, 954639, 1549319, 1826773, 3169440, 3170466, 3973793, 3974819, 3975845, 4012718, 4013744, 5120160, 5653357, 5978943
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 7*n digits to reach n.
Consider the digits of 7*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			7*25 = 175:
1 + 7 + 5 = 13;
7 + 5 + 13 =25.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[7 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)

A282763 8*n analog to Keith numbers.

Original entry on oeis.org

9, 20, 176, 184, 277, 2669, 15705, 233202, 241202, 445657, 742714, 2095479, 4697536, 10508788, 20308656, 55683878, 86603874
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 8*n digits to reach n.
Consider the digits of 8*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			8*20 = 160:
1 + 6 + 0 = 7;
6 + 0 + 7 = 13;
0 + 7 + 13 = 20.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[8 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
Showing 1-10 of 13 results. Next