A282769
n/7 analog of Keith numbers.
Original entry on oeis.org
301, 602, 1113, 4942, 478205, 23942940, 47885880, 178114489749
Offset: 1
1113/7 = 159:
1 + 5 + 9 = 15;
5 + 9 + 15 = 29;
9 + 15 + 29 = 53;
15 + 29 + 53 = 97;
29 + 53 + 97 = 179;
53 + 97 + 179 = 329;
97 + 179 + 329 = 605;
179 + 329 + 605 = 1113.
-
with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
With[{n = 7}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)
A282768
n/5 analog of Keith numbers.
Original entry on oeis.org
55, 110, 165, 220, 275, 330, 385, 440, 495, 530, 47270, 119710, 685385, 21526000, 6055017240
Offset: 1
530/5 = 106:
1 + 0 + 6 = 7;
0 + 6 + 7 = 13;
6 + 7 + 13 = 26;
7 + 13 + 26 = 46;
13 + 26 + 46 = 85;
26 + 46 + 85 = 157;
46 + 85 + 157 = 288;
85 + 157 + 288 = 530.
-
with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
With[{n = 5}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)
A282767
n/3 analog of Keith numbers.
Original entry on oeis.org
45, 609, 1218, 1827, 3213, 21309, 28206, 29319, 31917, 39333, 47337, 78666, 102090, 117999, 204180, 406437, 302867592, 4507146801, 5440407522
Offset: 1
609/3 = 203:
2 + 0 + 3 = 5;
0 + 3 + 5 = 8;
3 + 5 + 8 = 16;
5 + 8 + 16 = 29;
8 + 16 + 29 = 53;
16 + 29 + 53 = 98;
29 + 53 + 98 = 180;
53 + 98 + 180 = 331;
98 + 180 + 331 = 609.
-
with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]
-
With[{n = 3}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)
A284493
Analog of Keith numbers based on digits of sum of anti-divisors.
Original entry on oeis.org
18, 26, 40, 93, 95, 122, 227, 5640, 8910, 15481, 56028, 117056, 282103, 394608, 2059983, 3775282, 3804607, 5005918, 10390740, 31753906, 42117745, 67170923, 98908536, 176337241
Offset: 1
Sum of the anti-divisors of 18 is 28: 2 + 8 = 10, 8 + 10 = 18.
Sum of the anti-divisors of 93 is 140: 1 + 4 + 0 = 5, 4 + 0 + 5 = 9, 0 + 5 + 9 = 14, 5 + 9 + 14 = 28, 9 + 14 + 28 = 51, 14 + 28 + 51 = 93.
-
with(numtheory): P:=proc(q,h) local a,b,j,k,n,t,v; v:=array(1..h);
for n from 10^6 to q do k:=0; j:=n; while j mod 2 <> 1 do
k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
b:=ilog10(a)+1; if b>1 then for k from 1 to b do
v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1;
v[t]:=add(v[k], k=1..b); while v[t]
Showing 1-4 of 4 results.
Comments