A274769
Square analog to Keith numbers.
Original entry on oeis.org
1, 9, 37, 40, 43, 62, 70, 74, 160, 1264, 1952, 2847, 12799, 16368, 16584, 42696, 83793, 97415, 182011, 352401, 889871, 925356, 1868971, 1881643, 3661621, 7645852, 15033350, 21655382, 63288912, 88192007, 158924174, 381693521, 792090500, 2025078249, 2539401141
Offset: 1
1264^2 = 1597696 :
1 + 5 + 9 + 7 + 6 + 9 + 6 = 43;
5 + 9 + 7 + 6 + 9 + 6 + 43 = 85;
9 + 7 + 6 + 9 + 6 + 43 + 85 = 165;
7 + 6 + 9 + 6 + 43 + 85 + 165 = 321;
6 + 9 + 6 + 43 + 85 + 165 + 321 = 635;
9 + 6 + 43 + 85 + 165 + 321 + 635 = 1264.
-
with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h);
for n from 1 to q do b:=n^2; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^2)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[n^2], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
(* function keithQ[ ] is defined in A007629 *)
a274769[n_] := Join[{1, 9}, Select[Range[10, n], keithQ[#, 2]&]]
a274769[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A274770
Cube analog to Keith numbers.
Original entry on oeis.org
1, 8, 17, 18, 26, 27, 44, 55, 63, 80, 105, 187, 326, 776, 1095, 2196, 6338, 13031, 13131, 25562, 27223, 70825, 140791, 553076, 632489, 1402680, 1404312, 3183253, 11311424, 50783292, 51231313, 182252596, 255246098, 522599548, 1180697763, 2025114819, 2137581414
Offset: 1
776^3 = 467288576 :
4 + 6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 = 53;
6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 = 102;
7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 = 198;
2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 = 389;
8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 + 389 = 776.
-
with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h);
for n from 1 to q do b:=n^3; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^3)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a274770[n_] := Join[{1, 8}, Select[Range[10, n], keithQ[#, 3]&]]
a274770[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A281915
4th power analog of Keith numbers.
Original entry on oeis.org
1, 7, 19, 20, 22, 25, 28, 36, 77, 107, 110, 175, 789, 1528, 1932, 3778, 5200, 7043, 8077, 38855, 41234, 44884, 49468, 204386, 763283, 9423515, 73628992, 87146144, 146124072, 146293356, 326194628, 1262293219, 1321594778, 2767787511, 11511913540, 12481298961, 13639550655
Offset: 1
175^4 = 937890625:
9 + 3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 = 49;
3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 = 89;
7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 + 89 = 175.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281915[n_] := Join[{1, 7}, Select[Range[10, n], keithQ[#, 4]&]]
a281915[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A281916
5th power analog of Keith numbers.
Original entry on oeis.org
1, 28, 35, 36, 46, 51, 99, 109, 191, 239, 476, 491, 1022, 1126, 1358, 1362, 15156, 21581, 44270, 63377, 100164, 375830, 388148, 2749998, 5215505, 10158487, 81082532, 87643314, 410989134, 1485204944, 3496111364, 3829840893, 15889549579, 16107462404, 16766005098, 17608009898
Offset: 1
109^5 = 15386239549:
1 + 5 + 3 + 8 + 6 + 2 + 3 + 9 + 5 + 4 + 9 = 55;
5 + 3 + 8 + 6 + 2 + 3 + 9 + 5 + 4 + 9 + 55 = 109.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281916[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 5]&]]
a281916[5*10^5] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A281917
6th power analog of Keith numbers.
Original entry on oeis.org
1, 18, 45, 54, 64, 125, 218, 246, 935, 1125, 6021, 6866, 7887, 40210, 89330, 457625, 577655, 613385, 640118, 5200210, 6809148, 7293243, 10013591, 50980917, 216864574, 885859983, 4556794863, 4939169289, 8580755055, 8672110451, 18562634876, 18992278338, 36013476739
Offset: 1
125^6 = 3814697265625:
3 + 8 + 1 + 4 + 6 + 9 + 7 + 2 + 6 + 5 + 6 + 2 + 5 = 64;
8 + 1 + 4 + 6 + 9 + 7 + 2 + 6 + 5 + 6 + 2 + 5 + 64 = 125.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[n_, e_] is defined in A007629 *)
a281917[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 6]&]]
a281917[10^4] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A281918
7th power analog of Keith numbers.
Original entry on oeis.org
1, 18, 27, 31, 34, 43, 53, 58, 68, 145, 187, 314, 826, 2975, 37164, 40853, 58530, 72795, 77058, 160703, 187617, 1926759, 6291322, 6628695, 25285305, 31292514, 33968486, 54954185, 71593237, 125921697, 555963577, 575307142, 2393596216, 2444508547, 42544333760, 97812197525
Offset: 1
145^7 = 1347646586640625:
1 + 3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 = 73;
3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 + 73 = 145.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281918[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 7]&]]
a281918[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A281919
8th-power analog of Keith numbers.
Original entry on oeis.org
1, 30, 46, 54, 63, 207, 394, 693, 694, 718, 20196, 42664, 80051, 90135, 91447, 93136, 207846, 324121, 361401, 421609, 797607, 802702, 882227, 1531788, 1788757, 1789643, 4028916, 4176711, 6692664, 15643794, 31794346, 65335545, 140005632, 144311385, 153364253
Offset: 1
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281919[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 8]&]]
a281919[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A281920
9th-power analog of Keith numbers.
Original entry on oeis.org
1, 54, 71, 81, 196, 424, 451, 2394, 9057, 51737, 52141, 104439, 227914, 228088, 1019555, 1096369, 1202713, 1687563, 1954556, 3332130, 3652731, 4177592, 31669012, 79937731, 81478913, 148341053, 168763202, 182573136, 342393476, 773367191, 1450679282, 2914657310, 3282344153
Offset: 1
196^9 = 426878854210636742656:
4 + 2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 = 100;
2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 + 100 = 196.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281920[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 9]&]]
a281920[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A281921
10th-power analog of Keith numbers.
Original entry on oeis.org
1, 82, 85, 94, 97, 106, 117, 459, 1197, 24615, 24657, 26184, 87664, 117099, 538168, 1049708, 1229174, 2210323, 4587773, 11019224, 96167938, 104719358, 202511251, 226456915, 821871524, 1811437987, 1832881095, 3530066559, 7414362499, 7906250753, 15607432165, 15631766564
Offset: 1
106^10 = 179084769654285362176: 1 + 7 + 9 + 0 + 8 + 4 + 7 + 6 + 9 + 6 + 5 + 4 + 2 + 8 + 5 + 3 + 6 + 2 + 1 + 7 + 6 = 106.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281921[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 10]&]]
a281921[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
A247012
Consider the aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to the reverse of themselves.
Original entry on oeis.org
6, 133, 172, 841, 1005, 1603, 4258, 5299, 192901, 498906, 1633303, 5307589, 16333303, 20671542, 41673714, 42999958, 73687923
Offset: 1
Aliquot parts of 1005 are 1, 3, 5, 15, 67, 201 and 335:
1 + 3 + 5 + 15 + 67 + 201 + 335 = 627;
3 + 5 + 15 + 67 + 201 + 335 + 627 = 1253;
5 + 15 + 67 + 201 + 335 + 627 + 1253 = 2503;
15 + 67 + 201 + 335 + 627 + 1253 + 2503 = 5001 that is the reverse of 1005.
Aliquot parts of 1603 are 1, 7 and 229:
1 + 7 + 229 = 237;
7 + 229 + 237 = 473;
229 + 237 + 473 = 939;
237 + 473 + 939 = 1649;
473 + 939 + 1649 = 3061 that is the reverse of 1603;
-
with(numtheory): R:=proc(w) local x,y; x:=w; y:=0;
while x>0 do y:=10*y+(x mod 10); x:=trunc(x/10); od: y; end:
P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h);
for n from 2 to q do if not isprime(n) then
a:=sort([op(divisors(n))]); b:=nops(a)-1; c:=ilog10(n)+1;
for k from 1 to b do v[k]:=a[k]; od;
t:=b+1; v[t]:=add(v[k], k=1..b);
if R(v[t])=n then print(n); else
while ilog10(v[t])+1<=c do t:=t+1; v[t]:=add(v[k], k=t-b..t-1);
if R(v[t])=n then print(n); break; fi; od; fi; fi; od;
end: P(10^9, 1000);
-
A247012 = {};
For[n = 4, n <= 1000000, n++,
If[PrimeQ[n], Continue[]];
r = IntegerReverse[n];
a = Most[Divisors[n]];
sum = Total[a];
While[sum < r, sum = Total[a = Join[Rest[a], {sum}]]];
If[sum == r, AppendTo[A247012, n]];
]; A247012 (* Robert Price, Sep 08 2019 *)
-
from sympy import isprime, divisors
A247012_list = []
for n in range(2,10**9):
m = int(str(n)[::-1])
if not isprime(n):
x = divisors(n)
x.pop()
y = sum(x)
while y < m:
x, y = x[1:]+[y], 2*y-x[0]
if y == m:
A247012_list.append(n) # Chai Wah Wu, Sep 12 2014
Showing 1-10 of 15 results.
Comments