cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188429 L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 13, 13
Offset: 1

Views

Author

Madjid Mirzavaziri, Mar 31 2011

Keywords

Comments

Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number L(n) denotes the minimum of the set {max A: (sum A)=[n] }.
Terms m > 7 occur exactly m times. - Reinhard Zumkeller, Aug 06 2015

Examples

			From _Reinhard Zumkeller_, Aug 06 2015: (Start)
Compressed table: no commas and for a and k: 10 replaced by A, 11 by B.
. -----------------------------------------------------------------------------
.   n   1   5   10   15   20   25   30   35   40   45   50   55   60   65   70
. ----  .---.----.----.----.----.----.----.----.----.----.----.----.----.----.-
. t(n)  10100100010000100000100000010000000100000000100000000010000000000100000
. k(n)  1 2  3   4    5     6      7       8        9         A          B
. r(n)  0101201230123401234501234560123456701234567801234567890123456789A012345
. ----  -----------------------------------------------------------------------
. a(n)  102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC
. -----------------------------------------------------------------------------
where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End)
		

Crossrefs

Programs

  • Haskell
    a188429 n = a188429_list !! (n-1)
    a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++
                   f [15 ..] (drop 15 a010054_list) 0 4
       where f (x:xs) (t:ts) r k | t == 1    = (k + 1) : f xs ts 1 (k + 1)
                                 | r < k - 1 = (k + 1) : f xs ts (r + 1) k
                                 | otherwise = (k + 2) : f xs ts (r + 1) k
    -- Reinhard Zumkeller, Aug 06 2015
  • Mathematica
    kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *)

Formula

for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then
|k, if r=0
L(n) = |k+1, if 1 <= r <= k-2
|k+2, if k-1 <= r <= k.