A188429 L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists.
1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 13, 13
Offset: 1
Examples
From _Reinhard Zumkeller_, Aug 06 2015: (Start) Compressed table: no commas and for a and k: 10 replaced by A, 11 by B. . ----------------------------------------------------------------------------- . n 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 . ---- .---.----.----.----.----.----.----.----.----.----.----.----.----.----.- . t(n) 10100100010000100000100000010000000100000000100000000010000000000100000 . k(n) 1 2 3 4 5 6 7 8 9 A B . r(n) 0101201230123401234501234560123456701234567801234567890123456789A012345 . ---- ----------------------------------------------------------------------- . a(n) 102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC . ----------------------------------------------------------------------------- where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Mohammad Saleh Dinparvar, Python program
- L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3.
Programs
-
Haskell
a188429 n = a188429_list !! (n-1) a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++ f [15 ..] (drop 15 a010054_list) 0 4 where f (x:xs) (t:ts) r k | t == 1 = (k + 1) : f xs ts 1 (k + 1) | r < k - 1 = (k + 1) : f xs ts (r + 1) k | otherwise = (k + 2) : f xs ts (r + 1) k -- Reinhard Zumkeller, Aug 06 2015
-
Mathematica
kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *)
Formula
for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then
|k, if r=0
L(n) = |k+1, if 1 <= r <= k-2
|k+2, if k-1 <= r <= k.
Comments