cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188485 Decimal expansion of (3+sqrt(17))/4, which has periodic continued fractions [1,1,3,1,1,3,1,1,3,...] and [3/2, 3, 3/2, 3, 3/2, ...].

Original entry on oeis.org

1, 7, 8, 0, 7, 7, 6, 4, 0, 6, 4, 0, 4, 4, 1, 5, 1, 3, 7, 4, 5, 5, 3, 5, 2, 4, 6, 3, 9, 9, 3, 5, 1, 9, 2, 5, 6, 2, 8, 6, 7, 9, 9, 8, 0, 6, 3, 4, 3, 4, 0, 5, 1, 0, 8, 5, 9, 9, 6, 5, 8, 3, 9, 3, 2, 7, 3, 7, 3, 8, 5, 8, 6, 5, 8, 4, 4, 0, 5, 3, 9, 8, 3, 9, 6, 9, 6, 5, 9, 1, 2, 7, 0, 2, 6, 7, 1, 0, 7, 4, 1, 7, 1, 1, 3, 6, 0, 1, 0, 2, 3, 4, 8, 0, 3, 5, 3, 5, 4, 0
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Let R denote a rectangle whose shape (i.e., length/width) is (3+sqrt(17))/3. This rectangle can be partitioned into squares in a manner that matches the continued fraction [1,1,3,1,1,3,1,1,3,...]. It can also be partitioned into rectangles of shape 3/2 and 3 so as to match the continued fraction [3/2, 3, 3/2, 3, 3/2, ...]. For details, see A188635.
Apart from the second digit the same as A188934. - R. J. Mathar, May 16 2011
Equivalent to the infinite continued fraction with denominators [1; 2, 1, 2, 1, ...] and numerators [2, 1, 2, ...], also expressible as 1+2/(2+1/(1+2/(2+1/...))). - Matthew A. Niemiro, Dec 13 2019

Examples

			1.780776406404415137455352463993519256287...
		

Crossrefs

Programs

  • Mathematica
    FromContinuedFraction[{3/2, 3, {3/2, 3}}]
    ContinuedFraction[%, 25]  (* [1,1,3,1,1,3,1,1,3,...] *)
    RealDigits[N[%%, 120]]  (* A188485 *)
    N[%%%, 40]
    RealDigits[(3+Sqrt[17])/4,10,120][[1]] (* Harvey P. Dale, May 09 2025 *)