cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188493 a(n) = A188491(n-1) + A188495(n-1) + A188497(n-1).

Original entry on oeis.org

0, 0, 2, 6, 14, 31, 104, 344, 1084, 3236, 9784, 29964, 92241, 282780, 865064, 2646292, 8102454, 24813838, 75982346, 232630527, 712230076, 2180675264, 6676819512, 20443032008, 62591840320, 191641545768, 586762729889, 1796535598952, 5500587026592
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2011

Keywords

Comments

For n >= 2, a(n) is the number of permutations p on the set [n] with the properties that abs(p(i)-i) <= 3 for all i, p(j) <= 2+j for j = 1,2, and p(j) >= j-2 for j = 4,5.
For n >= 2, a(n) is also the permanent of the n X n matrix that has ones on its diagonal, ones on its three superdiagonals (with the exception of zeros in the (1,4) and (2,5)-entries), ones on its three subdiagonals (with the exception of zeros in the (4,1) and (5,2)-entries), and is zero elsewhere.
This is row 7 of Kløve's Table 3.

Programs

  • Maple
    with (LinearAlgebra):
    A188493:= n-> `if` (n<=1, 0, Permanent (Matrix (n, (i, j)->
                  `if` (abs(j-i)<4 and [i, j]<>[4, 1] and [i, j]<>[5, 2] and [i, j]<>[1, 4] and [i, j]<>[2, 5], 1, 0)))):
    seq (A188493(n), n=0..20);
  • Mathematica
    a[n_] := Permanent[Table[If[Abs[j - i] < 4 && {i, j} != {4, 1} && {i, j} != {5, 2} && {i, j} != {1, 4} && {i, j} != {2, 5}, 1, 0], {i, 1, n}, {j, 1, n}] ]; a[1] = 0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)

Formula

G.f.: -(x^10+2*x^9+2*x^7 +4*x^6-2*x^5-6*x^4 -9*x^3-2*x^2+2*x+2) *x^2 / (x^14 +2*x^13+2*x^11 +4*x^10-2*x^9-10*x^8 -16*x^7-2*x^6+8*x^5 +10*x^4 +2*x^2 +2*x-1). - Alois P. Heinz, Apr 08 2011

Extensions

Name and comments edited, and a(12)-a(28) from Nathaniel Johnston, Apr 08 2011