A188494 Number of permutations p on the set [n] with the properties that abs(p(i)-i) <= 3 for all i and p(1) <= 2.
0, 1, 2, 4, 12, 42, 138, 414, 1235, 3764, 11604, 35664, 109132, 333652, 1021220, 3127709, 9578526, 29326904, 89785684, 274896606, 841682902, 2577075290, 7890425175, 24158602552, 73968049928, 226473538032, 693411153800, 2123068036904, 6500352097064
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000(first 93 terms from Nathaniel Johnston)
- Torleiv Kløve, Spheres of Permutations under the Infinity Norm - Permutations with limited displacement, Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
- Index entries for linear recurrences with constant coefficients, signature (1,3,3,13,21,19,3,-7,-9,-5,-3,-3,-1).
Programs
-
Maple
with(LinearAlgebra): A188494:= n-> `if`(n=0, 0, Permanent(Matrix(n, (i, j)-> `if`(abs(j-i)<4 and [i, j]<>[3, 1] and [i, j]<>[4, 1], 1, 0)))): seq(A188494(n), n=0..20);
-
Mathematica
LinearRecurrence[{1,3,3,13,21,19,3,-7,-9,-5,-3,-3,-1},{0,1,2,4,12,42,138,414,1235,3764,11604,35664,109132},30] (* Harvey P. Dale, Dec 27 2015 *)
-
PARI
concat(0, Vec(x*(x^6 +x^5 -x^4 -x^3 -x^2 +x +1) / (x^13 +3*x^12 +3*x^11 +5*x^10 +9*x^9 +7*x^8 -3*x^7 -19*x^6 -21*x^5 -13*x^4 -3*x^3 -3*x^2 -x +1) + O(x^100))) \\ Colin Barker, Dec 13 2014
Formula
From Nathaniel Johnston, Apr 10 2011: (Start)
(End)
G.f.: x*(x^6 +x^5 -x^4 -x^3 -x^2 +x +1) / (x^13 +3*x^12 +3*x^11 +5*x^10 +9*x^9 +7*x^8 -3*x^7 -19*x^6 -21*x^5 -13*x^4 -3*x^3 -3*x^2 -x +1). - Colin Barker, Dec 13 2014
Extensions
Name and comments edited, and a(12)-a(28) from Nathaniel Johnston, Apr 10 2011
Comments