cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188580 Number of words of length n over an alphabet of size 5 which do not contain a run of 5 identical letters.

Original entry on oeis.org

1, 5, 25, 125, 625, 3120, 15580, 77800, 388500, 1940000, 9687520, 48375280, 241565200, 1206272000, 6023600000, 30079249920, 150202748480, 750047481600, 3745412320000, 18702967200000, 93394519000320, 466371784007680, 2328858730112000, 11629312001280000, 58071748137600000, 289985162611998720, 1448060325923962880, 7230986194699366400
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2011

Keywords

Comments

This is the case M=5 of the general problem mentioned in A188714.

Crossrefs

Programs

  • Maple
    See A188714.
  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + x^3 + x^4)/(1 - 4*x - 4*x^2 - 4*x^3 - 4*x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 09 2012 *)

Formula

G.f.: (1+x+x^2+x^3+x^4)/(1-4*x-4*x^2-4*x^3-4*x^4).