cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188587 1-Euler triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 30, 14, 1, 1, 33, 146, 146, 33, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 151, 2241, 7687, 7687, 2241, 151, 1, 1, 310, 7780, 44194, 76870, 44194, 7780, 310, 1, 1, 629, 25820, 231236, 649514, 649514, 231236, 25820, 629, 1, 1, 1268, 83121, 1131504, 4866222, 7794168, 4866222, 1131504, 83121, 1268, 1
Offset: 0

Views

Author

Paul Barry, Apr 04 2011

Keywords

Comments

Formed with the same recurrence as the Euler triangle A008292 (adjusted for offset), but with the middle element of row n=2 set to 1.
Row sums are A188588. Second column is A188589.

Examples

			Triangle begins
  1;
  1,   1;
  1,   1,     1;
  1,   5,     5,      1;
  1,  14,    30,     14,      1;
  1,  33,   146,    146,     33,      1;
  1,  72,   603,   1168,    603,     72,      1;
  1, 151,  2241,   7687,   7687,   2241,    151,     1;
  1, 310,  7780,  44194,  76870,  44194,   7780,   310,   1;
  1, 629, 25820, 231236, 649514, 649514, 231236, 25820, 629, 1;
		

Programs

  • Maple
    A188587 := proc(n,k) if k < 0 or k > n then 0; elif k=0 or k= n or n=2 then 1; else (n-k+1)*procname(n-1,k-1)+(k+1)*procname(n-1,k) ; end if; end proc:
    seq(seq(A188587(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 13 2011

Formula

T(n,k) = 0 if k < 0 or k > n.
T(n,k) = 1 if k=0 or k=n or n=2.
T(n,k)= (n-k+1)*T(n-1,k-1) + (k+1)*T(n-1,k), n > 2 and 1 <= k < n.

A370065 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled nodes with k articulation vertices, (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 5, 3, 0, 0, 24, 28, 12, 0, 0, 334, 390, 240, 60, 0, 0, 13262, 10776, 6090, 2280, 360, 0, 0, 1106862, 615860, 255570, 92820, 23520, 2520, 0, 0, 175376048, 66625504, 19275424, 5446560, 1429680, 262080, 20160, 0, 0, 52257938968, 13210716600, 2592577512, 520122456, 112145040, 22649760, 3144960, 181440, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Feb 25 2024

Keywords

Examples

			Triangle begins:
        1;
        1,      0;
        2,      0,      0;
        5,      3,      0,     0;
       24,     28,     12,     0,     0;
      334,    390,    240,    60,     0,    0;
    13262,  10776,   6090,  2280,   360,    0, 0;
  1106862, 615860, 255570, 92820, 23520, 2520, 0, 0;
  ...
		

Crossrefs

Row sums are A006125.
Column k=0 is A370066.
Cf. A188588, A370064 (connected).

Programs

  • PARI
    \\ Needs G, J defined in A370064.
    T(n)={my(v=Vec( ((y-1)*x + serreverse(x/((1-y) + y*exp(G(n)))))/y ), w=Vec(serlaplace(exp(sum(k=1, n, Polrev(J(v[k],k),y)*x^k, O(x*x^n)) )))); vector(#w, n, Vecrev(w[n],n))}
    { my(A=T(8)); for(i=1, #A, print(A[i])) }

Formula

Exponential transform of A370064.
T(n+2, n) = A188588(n + 1).
Showing 1-2 of 2 results.