cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188587 1-Euler triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 30, 14, 1, 1, 33, 146, 146, 33, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 151, 2241, 7687, 7687, 2241, 151, 1, 1, 310, 7780, 44194, 76870, 44194, 7780, 310, 1, 1, 629, 25820, 231236, 649514, 649514, 231236, 25820, 629, 1, 1, 1268, 83121, 1131504, 4866222, 7794168, 4866222, 1131504, 83121, 1268, 1
Offset: 0

Views

Author

Paul Barry, Apr 04 2011

Keywords

Comments

Formed with the same recurrence as the Euler triangle A008292 (adjusted for offset), but with the middle element of row n=2 set to 1.
Row sums are A188588. Second column is A188589.

Examples

			Triangle begins
  1;
  1,   1;
  1,   1,     1;
  1,   5,     5,      1;
  1,  14,    30,     14,      1;
  1,  33,   146,    146,     33,      1;
  1,  72,   603,   1168,    603,     72,      1;
  1, 151,  2241,   7687,   7687,   2241,    151,     1;
  1, 310,  7780,  44194,  76870,  44194,   7780,   310,   1;
  1, 629, 25820, 231236, 649514, 649514, 231236, 25820, 629, 1;
		

Programs

  • Maple
    A188587 := proc(n,k) if k < 0 or k > n then 0; elif k=0 or k= n or n=2 then 1; else (n-k+1)*procname(n-1,k-1)+(k+1)*procname(n-1,k) ; end if; end proc:
    seq(seq(A188587(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 13 2011

Formula

T(n,k) = 0 if k < 0 or k > n.
T(n,k) = 1 if k=0 or k=n or n=2.
T(n,k)= (n-k+1)*T(n-1,k-1) + (k+1)*T(n-1,k), n > 2 and 1 <= k < n.

A336014 Irregular triangle read by rows: T(n,1) = T(n,2) = T(n,3*n-2) = T(n,3*n-1) = n for n >= 1 and T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n > 1, 3 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 6, 7, 8, 8, 8, 7, 6, 4, 4, 5, 5, 8, 10, 13, 15, 16, 16, 15, 13, 10, 8, 5, 5, 6, 6, 10, 13, 18, 23, 28, 31, 32, 31, 28, 23, 18, 13, 10, 6, 6, 7, 7, 12, 16, 23, 31, 41, 51, 59, 63, 63, 59, 51, 41, 31, 23, 16, 12, 7, 7
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jul 04 2020

Keywords

Comments

The number of terms in row n is 3*n-1 = A016789(n-1).
The sum of row n is equal to 2*A094002(n-1) = 2*A188589(n).
Fibonacci(n) = T(n+k,n) - T(n+k-1,n) for n >= 1, k = 1,2,3,...
The elements b(k) of the main diagonal, superdiagonal 1 and all subdiagonals have the recursive formula: b(k) = 2*b(k-1) + b(k-2) - 2*b(k-3) - b(k-4) for k > 4.

Examples

			Triangle begins:
n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20...
1   1  1
2   2  2  2  2  2
3   3  3  4  4  4  4  3  3
4   4  4  6  7  8  8  8  7  6  4  4
5   5  5  8 10 13 15 16 16 15 13 10  8  5  5
6   6  6 10 13 18 23 28 31 32 31 28 23 18 13 10  6  6
7   7  7 12 16 23 31 41 51 59 63 63 59 51 41 31 23 16 12  7  7
...
		

Crossrefs

Superdiagonal 1 is A029907 for n >= 1.
The main diagonal is A208354 for n >= 1.
Subdiagonal 1 is A102702(n-1) for n >= 1.
Subdiagonal 2 is A206268(n+2) for n >= 1 (conjectured).
Subdiagonal 3 is A191830(n+3) for n >= 1.

Formula

T(n,k) = T(n,3*k-n) for 1 <= k <= 3*n-1.
T(n,k) = Sum_{u=2*(n-k)+3..2*n-k+1} ceiling(u/2)*A065941(k-2,u-2*(n-k)-3) for n >= 3, 3 <= k <= n.
T(n,k) = Sum_{m1=1..k-n} A208354(m1)*binomial(n-m1-1, k-n-m1) + Sum_{m2=1..2*n-k} A208354(m2)*binomial(n-m2-1, 2*n-k-m2) for n >= 2, n+1 <= k <= 2*n-1.
T(n,k) = Sum_{u=2*(k-2*n)+3..k-n+1} ceiling(u/2)*A065941(3*n-k-2,u-2*(k-2*n)-3) for n>= 3, 2*n <= k <= 3*(n-1).
T(n,k) = A208354(k) + (n-k)*Fibonacci(k) for n >= 3, 3 <= k <= n.
T(n,k) = A029907(k-1) + (n-k+1)*Fibonacci(k) for n >= 2, 3 <= k <= n+1.
Showing 1-2 of 2 results.