A188594 Decimal expansion of (circumradius)/(inradius) of side-golden right triangle.
2, 6, 5, 6, 8, 7, 5, 7, 5, 7, 3, 3, 7, 5, 2, 1, 5, 4, 9, 4, 8, 9, 7, 3, 2, 1, 2, 2, 3, 8, 4, 0, 9, 3, 0, 2, 9, 7, 2, 3, 6, 6, 0, 2, 5, 1, 5, 7, 4, 6, 5, 9, 0, 7, 5, 6, 5, 5, 0, 2, 6, 7, 4, 7, 8, 9, 2, 6, 9, 2, 1, 0, 7, 0, 6, 6, 4, 4, 7, 9, 0, 8, 9, 3, 4, 5, 0, 4, 0, 6, 5, 0, 2, 2, 9, 4, 3, 8, 5, 5, 1, 2, 0, 7, 0, 6, 9, 3, 7, 2, 2, 9, 5, 4, 2, 5, 5, 5, 3, 2, 7, 4, 5, 2, 6, 3, 0, 3, 8, 1
Offset: 1
Examples
2.656875757337521549489732...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
Programs
-
Magma
phi := (1+Sqrt(5))/2; [(Sqrt(5) + phi*Sqrt(2 + phi))/2]; // G. C. Greubel, Nov 23 2017
-
Mathematica
r=(1+5^(1/2))/2; b=1; a=r*b; c=(a^2+b^2)^(1/2); area = (1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2); RealDigits[N[a*b*c*(a+b+c)/(8*area^2), 130]][[1]] RealDigits[(Sqrt[5] + GoldenRatio*Sqrt[2 + GoldenRatio])/(2),10,50][[1]] (* G. C. Greubel, Nov 23 2017 *)
-
PARI
{phi = (1 + sqrt(5))/2}; (sqrt(5) + phi*sqrt(2 + phi))/2 \\ G. C. Greubel, Nov 23 2017
Formula
(circumradius)/(inradius)=abc(a+b+c)/(8*area^2), where area=area(ABC).
Equals (sqrt(5) + phi*sqrt(2 + phi))/2, where phi = A001622 is the golden ratio. - G. C. Greubel, Nov 23 2017
Comments