cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337393 Expansion of sqrt((1-5*x+sqrt(1-6*x+25*x^2)) / (2 * (1-6*x+25*x^2))).

Original entry on oeis.org

1, 1, -5, -41, -125, 131, 3301, 15625, 16115, -254525, -1813055, -4617755, 14903725, 192390589, 767919595, -28588201, -18144634861, -105011253485, -184605603311, 1406589226405, 12610893954745, 40402054036345, -63847551719825, -1340432504352485, -6346702151685475
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2020

Keywords

Crossrefs

Column k=1 of A337419.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n-k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    N=40; x='x+O('x^N); Vec(sqrt((1-5*x+sqrt(1-6*x+25*x^2))/(2*(1-6*x+25*x^2))))
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
a(0) = 1, a(1) = 1 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * (12*n^2-18*n+5) * a(n-1) - 25 * (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020

A337394 Expansion of sqrt(2 / ( (1-6*x+25*x^2) * (1-5*x+sqrt(1-6*x+25*x^2)) )).

Original entry on oeis.org

1, 5, 11, -29, -365, -1409, -155, 29485, 170035, 309775, -2064655, -18909175, -61552739, 81290561, 1901796395, 9145986419, 8604744275, -165227713249, -1168032362879, -2913302013175, 10702975797545, 132134872338925, 519716440255535, -109051949915065, -13098011769247075
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2020

Keywords

Crossrefs

Column k=1 of A337464.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n-k) * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    N=40; x='x+O('x^N); Vec(sqrt(2/((1-6*x+25*x^2)*(1-5*x+sqrt(1-6*x+25*x^2)))))
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
a(0) = 1, a(1) = 5 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (12*n^2-6*n-1) * a(n-1) - 25 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
Showing 1-2 of 2 results.