cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188615 Decimal expansion of Brocard angle of side-silver right triangle.

Original entry on oeis.org

3, 3, 9, 8, 3, 6, 9, 0, 9, 4, 5, 4, 1, 2, 1, 9, 3, 7, 0, 9, 6, 3, 9, 2, 5, 1, 3, 3, 9, 1, 7, 6, 4, 0, 6, 6, 3, 8, 8, 2, 4, 4, 6, 9, 0, 3, 3, 2, 4, 5, 8, 0, 7, 1, 4, 3, 1, 9, 2, 3, 9, 6, 2, 4, 8, 9, 9, 1, 5, 8, 8, 8, 6, 6, 4, 8, 4, 8, 4, 1, 1, 4, 6, 0, 7, 6, 5, 7, 9, 2, 5, 0, 0, 1, 9, 7, 6, 1, 2, 8, 5, 2, 1, 2, 9, 7, 6, 3, 8, 0, 7, 4, 0, 2, 2, 9, 4, 4, 7, 4, 1, 5, 2, 3, 9, 3, 5, 7, 5, 6
Offset: 0

Views

Author

Clark Kimberling, Apr 05 2011

Keywords

Comments

The Brocard angle is invariant of the size of the side-silver right triangle ABC. The shape of ABC is given by sidelengths a,b,c, where a=r*b, and c=sqrt(a^2+b^2), where r=(silver ratio)=(1+sqrt(2)). This is the unique right triangle matching the continued fraction [2,2,2,...] of r; i.e, under the side-partitioning procedure described in the 2007 reference, there are exactly 2 removable subtriangles at each stage. (This is analogous to the removal of 2 squares at each stage of the partitioning of the silver rectangle as a nest of squares.)
Archimedes's-like scheme: set p(0) = 1/(2*sqrt(2)), q(0) = 1/3; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
This angle is also the half-angle at the summit of the Kelvin wake pattern traced by a boat. - Robert FERREOL, Sep 27 2019

Examples

			Brocard angle: 0.3398369094541219370963925133917640663882 approx.
Brocard angle: 19.471220634490691369245999 degrees, approx.
		

Crossrefs

Programs

  • Magma
    [Arccos(Sqrt(8/9))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r=1+2^(1/2);
    b=1; a=r*b; c=(a^2+b^2)^(1/2);
    area=(1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2);
    brocard=ArcCot[(a^2+b^2+c^2)/(4area)];
    N[brocard, 130]
    RealDigits[N[brocard,130]][[1]]
    N[180 brocard/Pi,130] (* degrees *)
    RealDigits[ArcCos[Sqrt[8/9]], 10, 50][[1]] (* G. C. Greubel, Nov 18 2017 *)
  • PARI
    acos(sqrt(8/9)) \\ Charles R Greathouse IV, May 02 2013
    

Formula

(Brocard angle) = arccot((a^2+b^2+c^2)/(4*area(ABC))) = arccot(sqrt(8)).
Also equals arcsin(1/3) or arccsc(3). - Jean-François Alcover, May 29 2013
Equals Integral_{x=sqrt(2)/2..sqrt(2)} dx/(x^2 + 1). - Kritsada Moomuang, May 29 2025