A188615 Decimal expansion of Brocard angle of side-silver right triangle.
3, 3, 9, 8, 3, 6, 9, 0, 9, 4, 5, 4, 1, 2, 1, 9, 3, 7, 0, 9, 6, 3, 9, 2, 5, 1, 3, 3, 9, 1, 7, 6, 4, 0, 6, 6, 3, 8, 8, 2, 4, 4, 6, 9, 0, 3, 3, 2, 4, 5, 8, 0, 7, 1, 4, 3, 1, 9, 2, 3, 9, 6, 2, 4, 8, 9, 9, 1, 5, 8, 8, 8, 6, 6, 4, 8, 4, 8, 4, 1, 1, 4, 6, 0, 7, 6, 5, 7, 9, 2, 5, 0, 0, 1, 9, 7, 6, 1, 2, 8, 5, 2, 1, 2, 9, 7, 6, 3, 8, 0, 7, 4, 0, 2, 2, 9, 4, 4, 7, 4, 1, 5, 2, 3, 9, 3, 5, 7, 5, 6
Offset: 0
Examples
Brocard angle: 0.3398369094541219370963925133917640663882 approx. Brocard angle: 19.471220634490691369245999 degrees, approx.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
- Wikipedia, Kelvin wake pattern
- Index entries for transcendental numbers.
Programs
-
Magma
[Arccos(Sqrt(8/9))]; // G. C. Greubel, Nov 18 2017
-
Mathematica
r=1+2^(1/2); b=1; a=r*b; c=(a^2+b^2)^(1/2); area=(1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2); brocard=ArcCot[(a^2+b^2+c^2)/(4area)]; N[brocard, 130] RealDigits[N[brocard,130]][[1]] N[180 brocard/Pi,130] (* degrees *) RealDigits[ArcCos[Sqrt[8/9]], 10, 50][[1]] (* G. C. Greubel, Nov 18 2017 *)
-
PARI
acos(sqrt(8/9)) \\ Charles R Greathouse IV, May 02 2013
Formula
(Brocard angle) = arccot((a^2+b^2+c^2)/(4*area(ABC))) = arccot(sqrt(8)).
Also equals arcsin(1/3) or arccsc(3). - Jean-François Alcover, May 29 2013
Equals Integral_{x=sqrt(2)/2..sqrt(2)} dx/(x^2 + 1). - Kritsada Moomuang, May 29 2025
Comments