A188619 Decimal expansion of (diagonal)/(shortest side) of 2nd electrum rectangle.
2, 9, 0, 9, 3, 1, 2, 9, 1, 1, 1, 7, 6, 4, 0, 9, 4, 6, 4, 6, 0, 9, 7, 9, 9, 1, 3, 2, 0, 2, 0, 5, 2, 7, 5, 7, 1, 4, 7, 6, 9, 8, 6, 1, 8, 8, 3, 7, 9, 9, 3, 0, 3, 0, 1, 3, 3, 6, 8, 2, 8, 4, 6, 7, 5, 3, 4, 4, 4, 4, 3, 3, 8, 4, 4, 6, 6, 4, 0, 3, 8, 7, 6, 8, 7, 8, 1, 1, 3, 8, 7, 2, 2, 3, 7, 1, 0, 3, 2, 7, 1, 2, 0, 3, 0, 2, 5, 4, 2, 8, 1, 3, 0, 3, 1, 9, 9, 1, 8, 6, 0, 7, 8, 0, 5, 6, 3, 5, 0, 4
Offset: 1
Examples
(diagonal/shortest side) = 2.9093129111764094646 approximately.
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.13 Steinitz Constants, p. 241.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Clark Kimberling, A Visual Euclidean Algorithm, The Mathematics Teacher 76 (1983) 108-109.
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt(5+2*Sqrt(3)); // G. C. Greubel, Nov 02 2018
-
Mathematica
h = 1 + 3^(1/2); r = (1 + h^2)^(1/2) FullSimplify[r] N[r, 130] (* ratio of diagonal h to shortest side; h=[1,2,1,2,1,2,...] *) RealDigits[N[r, 130]][[1]] RealDigits[Sqrt[5 + 2*Sqrt[3]], 10, 100][[1]] (* G. C. Greubel, Nov 02 2018 *)
-
PARI
default(realprecision, 100); sqrt(5+2*sqrt(3)) \\ G. C. Greubel, Nov 02 2018
Formula
Equals sqrt(5+2*sqrt(3)).
Comments