A188658 Decimal expansion of (1+sqrt(101))/10.
1, 1, 0, 4, 9, 8, 7, 5, 6, 2, 1, 1, 2, 0, 8, 9, 0, 2, 7, 0, 2, 1, 9, 2, 6, 4, 9, 1, 2, 7, 5, 9, 5, 7, 6, 1, 8, 6, 9, 4, 5, 0, 2, 3, 4, 7, 0, 0, 2, 6, 3, 7, 7, 2, 9, 0, 5, 7, 2, 8, 2, 8, 2, 9, 7, 3, 2, 8, 4, 9, 1, 2, 3, 1, 5, 5, 1, 9, 7, 0, 3, 8, 1, 2, 3, 6, 1, 7, 7, 6, 9, 2, 4, 5, 3, 9, 5, 2, 3, 5, 2, 3, 6, 6, 2, 9, 9, 5, 0, 3, 2, 6, 5, 2, 6, 1, 3, 2, 3, 1, 8, 8, 1, 5, 9, 3, 5, 8, 5, 7
Offset: 1
Examples
1.104987562112089027021926491275957618694502347002...
Links
- Clark Kimberling, A Visual Euclidean Algorithm, The Mathematics Teacher 76 (1983) 108-109.
Crossrefs
Cf. A188640.
Programs
-
Mathematica
r = 1/5; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] ContinuedFraction[t, 120] RealDigits[(1+Sqrt[101])/10,10,150][[1]] (* Harvey P. Dale, Nov 29 2020 *)
Formula
Equals exp(arcsinh(1/10)). - Amiram Eldar, Jul 04 2023
Extensions
a(130) corrected by Georg Fischer, Apr 02 2020
Comments