cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188660 Oblong numbers that are the product of two oblong numbers.

Original entry on oeis.org

12, 72, 240, 420, 600, 1260, 2352, 4032, 6480, 7140, 9900, 14280, 14520, 20592, 28392, 38220, 46872, 50400, 65280, 78120, 83232, 104652, 123552, 129960, 159600, 194040, 233772, 279312, 291060, 331200, 390000, 456300, 485112, 530712, 609180, 613872, 699732, 706440, 809100, 852852, 922560
Offset: 1

Views

Author

T. D. Noe, Apr 07 2011

Keywords

Comments

Breiteig writes about the finding these numbers, but does not list these numbers as a sequence. The problem can be extended to any polygonal number: for example, when is a pentagonal number the product of two pentagonal numbers? See A188630 and A188663 for the triangular and pentagonal cases.
As shown in the example, the product of consecutive oblong numbers is also oblong: oblong(n) * oblong(n+1) = oblong(n*(n+2)).

Examples

			240 = 12 * 20; that is, oblong(15) = oblong(3) * oblong(4).
		

Crossrefs

Cf. A002378 (oblong numbers), A188630, A188663, A374374 (more than 2 factors allowed).

Programs

  • Mathematica
    OblongQ[n_] := IntegerQ[Sqrt[1 + 4 n]]; OblongIndex[n_] := Floor[(-1 + Sqrt[1 + 4*n])/2]; lim = 10^6; nMax = OblongIndex[lim/2]; obl = Table[n (n + 1), {n, nMax}]; Union[Reap[Do[num = obl[[i]]*obl[[j]]; If[OblongQ[num], Sow[num]], {i, OblongIndex[Sqrt[lim]]}, {j, i, OblongIndex[lim/obl[[i]]]}]][[2, 1]]]