cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188680 Alternate partial sums of binomial(3n,n)^2.

Original entry on oeis.org

1, 8, 217, 6839, 238186, 8779823, 335842273, 13185196127, 527732395714, 21438596184911, 881264330165314, 36575197658193086, 1530121867019096914, 64443673226319500222, 2729760145163758146178, 116203781083772019594878
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. Alternate partial sums of binomial(k*n,n)^2: A228002 (k=2), this sequence (k=3).

Programs

  • Mathematica
    Table[Sum[Binomial[3k,k]^2(-1)^(n-k),{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(3*k,k)^2*(-1)^(n-k),k,0,n),n,0,20);
    
  • PARI
    a(n)=my(t=1); sum(k=1,n, t*=(27*k^2 - 27*k + 6)/(4*k^2 - 2*k); (-1)^(n-k)*t^2)+(-1)^n \\ Charles R Greathouse IV, Nov 02 2016

Formula

a(n) = sum(C(3k,k)^2*(-1)^(n-k), k=0..n).
Recurrence: 4*(2*n^2+7*n+6)^2 * a(n+2) -(713*n^4+4262*n^3+9509*n^2 +9384*n+3456) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.
G.f.: (1+x)^(-1)*F(1/3,1/3,2/3,2/3;1/2,1/2,1;729*x/16), where F(a1,a2,a3,a4;b1,b2,b3;z) is a hypergeometric series.
a(n) ~ 3^(6*n+7)/(745*Pi*n*2^(4*n+2)). - Vaclav Kotesovec, Aug 06 2013