A188714 G.f.: (1+x+x^2+x^3)/(1-3*x-3*x^2-3*x^3).
1, 4, 16, 64, 252, 996, 3936, 15552, 61452, 242820, 959472, 3791232, 14980572, 59193828, 233896896, 924213888, 3651913836, 14430073860, 57018604752, 225301777344, 890251367868, 3517715249892, 13899805185312, 54923315409216, 217022507533260, 857536884383364, 3388448121977520, 13389022541682432, 52905022644129948, 209047479923369700
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. Noonan and D. Zeilberger, The Goulden-Jackson cluster method: extensions, applications and implementations
- Doron Zeilberger, Webpage of the paper `The Goulden-Jacskon Cluster Method: Extensions, Applications and Implementations', by John Noonan and Doron Zeilberger; Local copy, pdf file only, no active links
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3).
Programs
-
Maple
# First download the Maple package DAVID_IAN from the Zeilberger web site read(DAVID_IAN); M:=4; lis1:={}; for i from 1 to M do lis1:={op(lis1),x[i]}; od: lis2:={}; for i from 1 to M do t1:=[]; for j from 1 to M do t1:=[op(t1),x[i]]; od: lis2:={op(lis2),t1}; od: GJs(lis1, lis2, x);
-
Mathematica
CoefficientList[Series[(1+x+x^2+x^3)/(1-3x-3x^2-3x^3),{x,0,30}], x] (* Harvey P. Dale, Apr 16 2011 *)
Comments