cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188782 Number of 7-turn bishop's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 0, 784, 40496, 451104, 2803552, 12139552, 41792672, 121269248, 310362944, 718151344, 1534460624, 3067048224, 5801302304, 10464095808, 18125622336, 30299632896, 49104515712, 77410664016, 119081302128, 179178580768
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2011

Keywords

Comments

Row 7 of A188777.

Examples

			Some solutions for 4 X 4
..0..4..0..2....0..3..0..0....4..0..0..0....0..0..1..0....0..0..3..0
..7..0..3..0....4..0..2..0....0..3..0..7....0..5..0..2....0..1..0..4
..0..1..0..5....0..6..0..1....2..0..6..0....4..0..6..0....2..0..6..0
..0..0..6..0....7..0..5..0....0..1..0..5....0..3..0..7....0..5..0..7
		

Crossrefs

Cf. A188777.

Formula

Contribution from Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: Recurrence: a(n) = a(n-14) - 4*a(n-13) + a(n-12) + 16*a(n-11) - 19*a(n-10) - 20*a(n-9) + 45*a(n-8) - 45*a(n-6) + 20*a(n-5) + 19*a(n-4) - 16*a(n-3) - a(n-2) + 4*a(n-1).
Empirical: G.f.: 16*x^4*(49 + 2335*x + 18119*x^2 + 65761*x^3 + 125593*x^4 + 154411*x^5 + 109333*x^6 + 52763*x^7 + 12090*x^8 + 1722*x^9)/((1-x)^9*(1+x)^5).
Empirical: a(n) = 6421/16 - 581677*n/210 + 2022619*n^2/315 - 340262*n^3/45 + 1915471*n^4/360 - 106466*n^5/45 + 29363*n^6/45 - 31916*n^7/315 + 16943*n^8/2520 + (-1)^n*(-6421/16 + 1645*n/2 - 557*n^2 + 155*n^3 - 123*n^4/8).
(End)