A188824 T(n,k) = number of n X k binary arrays without the pattern 0 1 diagonally or antidiagonally.
2, 4, 4, 8, 9, 8, 16, 25, 16, 16, 32, 64, 48, 25, 32, 64, 169, 144, 81, 36, 64, 128, 441, 432, 256, 120, 49, 128, 256, 1156, 1296, 841, 400, 169, 64, 256, 512, 3025, 3888, 2704, 1360, 576, 224, 81, 512, 1024, 7921, 11664, 8836, 4624, 2025, 784, 289, 100, 1024, 2048
Offset: 1
Examples
Some solutions for 5X3 ..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..0....1..1..1 ..1..1..1....0..1..1....1..0..1....1..1..1....1..1..1....1..0..1....1..1..1 ..1..1..1....0..0..1....0..1..0....1..1..1....0..1..0....0..1..0....0..1..1 ..1..1..1....0..0..0....0..0..0....0..0..0....0..0..0....1..0..1....1..0..1 ..1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1627
Formula
Empirical: a(n,1) = 2^n
Empirical: a(n,2) = n^2 + 2*n + 1
Empirical: a(n,3) = 2*a(n-1,3) - 2*a(n-3,3) + a(n-4,3)
Empirical: a(n,4) = 16*n^2
Empirical: a(n,5) = 2*a(n-1,5) - 2*a(n-3,5) + a(n-4,5) for n>5
Empirical: a(n,6) = 256*n^2 - 384*n + 144 for n>2
Empirical: a(n,7) = 2*a(n-1,7) - 2*a(n-3,7) + a(n-4,7) for n>7
Empirical: a(n,8) = 4096*n^2 - 11264*n + 7744 for n>4
Comments