cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A188825 Number of 3Xn binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

8, 16, 48, 144, 432, 1296, 3888, 11664, 34992, 104976, 314928, 944784, 2834352, 8503056, 25509168, 76527504, 229582512, 688747536, 2066242608, 6198727824, 18596183472, 55788550416, 167365651248, 502096953744, 1506290861232
Offset: 1

Views

Author

R. H. Hardin Apr 11 2011

Keywords

Comments

Row 3 of A188824

Examples

			Some solutions for 3X3
..1..1..0....1..1..1....1..1..1....1..1..1....1..0..1....1..1..1....1..0..1
..0..0..1....1..1..0....1..1..1....0..0..0....0..1..0....1..1..0....0..1..0
..0..0..0....1..0..1....0..0..1....0..0..0....1..0..1....1..0..0....0..0..0
		

Formula

Empirical: a(n) = 3*a(n-1) for n>2

A188818 Number of n X n binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

1, 2, 9, 48, 256, 1360, 7056, 36000, 179776, 884256, 4276624, 20432608, 96353856, 449990080, 2080089664, 9540782208, 43403888896, 196212020800, 881112632976, 3936117388896, 17487049789504, 77350773736512, 340574032803904, 1493986588951168, 6528047911024896
Offset: 0

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Examples

			Some solutions for 3X3:
  0  1  0    1  1  1    1  1  1    1  0  1    1  0  1    1  0  1    1  1  0
  1  0  0    1  1  0    0  1  0    0  1  0    0  1  0    0  1  0    1  0  1
  0  0  0    1  0  1    0  0  0    1  0  1    0  0  0    1  0  0    0  0  0
		

Crossrefs

Diagonal of A188824.

Programs

  • Mathematica
    Prepend[Table[(2^(n - 2) + 2*Sum[Binomial[n - 1, n - k - l] - Binomial[n - 1, n + k - l + 1], {k, 0, Floor[(n + 1)/2]}, {l, k + 1, Floor[(n + 1)/2]}]) * (2^(n - 2) + 2*Sum[Binomial[n - 1, n - k - l - 1] - Binomial[n - 1, n + k - l + 1], {k, 0, Floor[n/2]}, {l, k + 1, Floor[n/2]}]), {n, 2, 100}], 2] (* Manuel Kauers and Christoph Koutschan, Mar 02 2023 *)

Formula

From Manuel Kauers and Christoph Koutschan, Mar 02 2023: (Start)
a(n) = (2^(n-2) + 2*Sum_{k=0..floor((n+1)/2)} Sum_{l=k+1..floor((n+1)/2)} binomial(n-1, n-k-l) - binomial(n-1, n+k-l+1)) * (2^(n-2) + 2*Sum_{k=0..floor(n/2)} Sum_{l=k+1..floor(n/2)} binomial(n-1, n-k-l-1) - binomial(n-1, n+k-l+1)) for n>1.
Recurrence: (n-2)*(n+3)^2*(n+4)*(2*n^6 - 3*n^5 - 22*n^4 - 17*n^3 - 16*n^2 - 61*n - 33)*a(n+5) - 4*(n+3)*(2*n^9 + 15*n^8 - 24*n^7 - 278*n^6 - 279*n^5 + 622*n^4 + 1327*n^3 + 1792*n^2 + 2619*n + 1314)*a(n+4) - 16*(n+2)*(4*n^9 + 8*n^8 - 91*n^7 - 251*n^6 + 183*n^5 + 509*n^4 - 1161*n^3 - 1955*n^2 - 399*n - 207)*a(n+3) + 64*(4*n^10 + 32*n^9 + 17*n^8 - 455*n^7 - 1362*n^6 - 754*n^5 + 2250*n^4 + 4669*n^3 + 5364*n^2 + 4509*n + 1566)*a(n+2) + 256*(n+1)*(2*n^9 + n^8 - 52*n^7 - 121*n^6 + 79*n^5 + 255*n^4 - 476*n^3 - 1533*n^2 - 1665*n - 810)*a(n+1) - 1024*(n-1)*n*(n+1)^2*(2*n^6 + 9*n^5 - 7*n^4 - 95*n^3 - 199*n^2 - 235*n - 150)*a(n) = 0. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 02 2023

A188819 Number of n X 3 binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

8, 25, 48, 81, 120, 169, 224, 289, 360, 441, 528, 625, 728, 841, 960, 1089, 1224, 1369, 1520, 1681, 1848, 2025, 2208, 2401, 2600, 2809, 3024, 3249, 3480, 3721, 3968, 4225, 4488, 4761, 5040, 5329, 5624, 5929, 6240, 6561, 6888, 7225, 7568, 7921, 8280, 8649
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Column 3 of A188824.

Examples

			Some solutions for 4 X 3:
..1..1..1....1..1..1....1..1..0....1..1..1....1..0..1....0..1..0....0..1..0
..0..1..1....1..1..1....1..0..1....1..1..1....0..0..0....1..0..1....1..0..1
..1..0..1....1..0..0....0..1..0....1..1..1....0..0..0....0..0..0....0..1..0
..0..0..0....0..0..0....0..0..1....1..1..1....0..0..0....0..0..0....1..0..1
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
Conjectures from Colin Barker, Apr 29 2018: (Start)
G.f.: x*(8 + 9*x - 2*x^2 + x^3) / ((1 - x)^3*(1 + x)).
a(n) = (2 + 8*n + 8*n^2) / 2 for n even.
a(n) = (8*n + 8*n^2) / 2 for n odd.
(End)

A188820 Number of n X 5 binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

32, 169, 432, 841, 1360, 2025, 2800, 3721, 4752, 5929, 7216, 8649, 10192, 11881, 13680, 15625, 17680, 19881, 22192, 24649, 27216, 29929, 32752, 35721, 38800, 42025, 45360, 48841, 52432, 56169, 60016, 64009, 68112, 72361, 76720, 81225, 85840, 90601
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Column 5 of A188824.

Examples

			Some solutions for 3 X 5:
..1..1..1..1..0....1..1..1..1..1....0..1..0..1..1....0..1..1..1..1
..0..1..1..0..1....0..1..1..1..0....0..0..0..0..1....1..0..1..1..1
..1..0..0..1..0....1..0..0..0..0....0..0..0..0..0....0..1..0..0..0
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5.
Conjectures from Colin Barker, Apr 29 2018: (Start)
G.f.: x*(32 + 105*x + 94*x^2 + 41*x^3 - 16*x^4) / ((1 - x)^3*(1 + x)).
a(n) = 9 - 48*n + 64*n^2 for n even.
a(n) = -48*n + 64*n^2 for n>1 and odd.
(End)

A188821 Number of n X 6 binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

64, 441, 1296, 2704, 4624, 7056, 10000, 13456, 17424, 21904, 26896, 32400, 38416, 44944, 51984, 59536, 67600, 76176, 85264, 94864, 104976, 115600, 126736, 138384, 150544, 163216, 176400, 190096, 204304, 219024, 234256, 250000, 266256, 283024
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Column 6 of A188824.

Examples

			Some solutions for 3 X 6:
..0..1..1..1..1..1....1..1..1..1..1..1....1..0..1..1..1..1....0..1..0..1..1..1
..0..0..1..0..1..0....0..1..1..1..1..1....0..1..0..1..0..1....1..0..1..0..1..1
..0..0..0..1..0..0....0..0..1..1..1..1....1..0..1..0..1..0....0..1..0..0..0..0
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 256*n^2 - 384*n + 144 for n>2.
Conjectures from Colin Barker, Apr 30 2018: (Start)
G.f.: x*(64 + 249*x + 165*x^2 + 75*x^3 - 41*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>5.
(End)

A188822 Number of n X 7 binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

128, 1156, 3888, 8836, 15776, 24964, 36000, 49284, 64416, 81796, 101024, 122500, 145824, 171396, 198816, 228484, 260000, 293764, 329376, 367236, 406944, 448900, 492704, 538756, 586656, 636804, 688800, 743044, 799136, 857476, 917664, 980100
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Column 7 of A188824.

Examples

			Some solutions for 3 X 7:
..1..1..1..0..1..1..1....1..1..1..1..1..0..1....1..1..1..1..1..1..1
..1..1..0..0..0..0..1....1..1..0..1..0..1..0....1..0..1..0..0..1..0
..0..0..0..0..0..0..0....1..0..1..0..0..0..0....0..1..0..0..0..0..0
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>7.
Conjectures from Colin Barker, Apr 30 2018: (Start)
G.f.: 4*x*(32 + 225*x + 394*x^2 + 329*x^3 + 72*x^4 + 8*x^5 - 36*x^6) / ((1 - x)^3*(1 + x)).
a(n) = 2*(578 - 1088*n + 512*n^2) for n>3 and even.
a(n) = 2*(528 - 1088*n + 512*n^2) for n>3 and odd.
(End)

A188823 Number of n X 8 binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

256, 3025, 11664, 28561, 53824, 87616, 129600, 179776, 238144, 304704, 379456, 462400, 553536, 652864, 760384, 876096, 1000000, 1132096, 1272384, 1420864, 1577536, 1742400, 1915456, 2096704, 2286144, 2483776, 2689600, 2903616, 3125824
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Column 8 of A188824.

Examples

			Some solutions for 3 X 8:
..1..1..1..0..1..0..1..0....1..1..0..1..1..1..1..1....0..1..1..1..1..1..1..1
..0..1..0..1..0..1..0..0....1..0..1..0..1..1..0..1....0..0..1..0..1..1..1..0
..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 4096*n^2 - 11264*n + 7744 for n>4.
Empirical g.f.: x*(256 + 2257*x + 3357*x^2 + 2388*x^3 + 108*x^4 + 163*x^5 - 337*x^6) / (1 - x)^3. - Colin Barker, Apr 30 2018

A188826 Number of 4 X n binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

16, 25, 81, 256, 841, 2704, 8836, 28561, 93025, 301401, 980100, 3179089, 10329796, 33524100, 108889225, 353477601, 1147922161, 3726858304, 12101980081, 39292754176, 127587553636, 414263438689, 1345129081209, 4367552437161
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Row 4 of A188824.

Examples

			Some solutions for 4 X 3:
..0..1..1....0..1..0....1..1..1....0..1..0....1..1..0....0..1..0....1..1..1
..0..0..1....1..0..1....1..1..1....0..0..0....1..0..1....1..0..0....1..1..1
..0..0..0....0..0..0....0..0..1....0..0..0....0..1..0....0..0..0....1..1..1
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..1..1
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 3*a(n-1) + 5*a(n-2) - 15*a(n-3) + 3*a(n-4) + 5*a(n-5) - a(n-6) for n>7.
Empirical g.f.: x*(16 - 23*x - 74*x^2 + 128*x^3 - 5*x^4 - 39*x^5 + 7*x^6) / ((1 - 5*x + 6*x^2 - x^3)*(1 + 2*x - x^2 - x^3)). - Colin Barker, Apr 30 2018

A188827 Number of 5 X n binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

32, 36, 120, 400, 1360, 4624, 15776, 53824, 183744, 627264, 2141568, 7311616, 24963328, 85229824, 290992640, 993510400, 3392056320, 11581203456, 39540701184, 135000395776, 460920180736, 1573679927296, 5372879347712
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Row 5 of A188824.

Examples

			Some solutions for 5 X 3:
..1..1..1....0..1..1....1..1..1....1..1..1....1..0..1....1..0..1....0..1..1
..1..1..1....1..0..1....1..1..1....1..1..1....0..0..0....0..1..0....1..0..1
..1..1..1....0..1..0....1..1..1....1..1..1....0..0..0....1..0..1....0..0..0
..1..0..0....1..0..0....1..0..1....1..0..1....0..0..0....0..1..0....0..0..0
..0..0..0....0..0..0....0..1..0....0..0..0....0..0..0....1..0..0....0..0..0
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 4*a(n-1) -8*a(n-3) +4*a(n-4) for n>5.
Empirical g.f.: 4*x*(8 - 23*x - 6*x^2 + 44*x^3 - 20*x^4) / ((1 - 4*x + 2*x^2)*(1 - 2*x^2)). - Colin Barker, Apr 30 2018

A188828 Number of 6 X n binary arrays without the pattern 0 1 diagonally or antidiagonally.

Original entry on oeis.org

64, 49, 169, 576, 2025, 7056, 24964, 87616, 310249, 1092025, 3865156, 13623481, 48191364, 169989444, 601034256, 2121063025, 7496962225, 26464782400, 93519144481, 330192741376, 1166628971236, 4119600902400, 14553774833481
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2011

Keywords

Comments

Row 6 of A188824.

Examples

			Some solutions for 6 X 3:
..1..1..1....1..1..1....0..1..0....1..1..1....0..1..1....1..1..1....1..1..1
..0..1..1....1..1..0....1..0..1....1..1..1....1..0..1....1..1..1....1..0..1
..1..0..1....1..0..1....0..1..0....1..1..0....0..1..0....1..1..1....0..0..0
..0..1..0....0..1..0....1..0..0....1..0..1....0..0..1....1..1..1....0..0..0
..1..0..0....1..0..0....0..0..0....0..1..0....0..0..0....1..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0
		

Crossrefs

Cf. A188824.

Formula

Empirical: a(n) = 4*a(n-1) +9*a(n-2) -45*a(n-3) +108*a(n-5) -42*a(n-6) -57*a(n-7) +18*a(n-8) +7*a(n-9) -a(n-10) for n>11.
Empirical g.f.: x*(64 - 207*x - 603*x^2 + 2339*x^3 + 405*x^4 - 5535*x^5 + 1831*x^6 + 2835*x^7 - 840*x^8 - 340*x^9 + 48*x^10) / ((1 - x)*(1 - 6*x + 9*x^2 - x^3)*(1 + 3*x - x^3)*(1 - 3*x^2 - x^3)). - Colin Barker, Apr 30 2018
Showing 1-10 of 12 results. Next