A223599
T(n,k)=Petersen graph (8,2) coloring a rectangular array: number of nXk 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.
Original entry on oeis.org
16, 48, 256, 144, 256, 4096, 432, 1504, 1376, 65536, 1296, 6736, 16192, 7424, 1048576, 3888, 32768, 122608, 176224, 40160, 16777216, 11664, 156592, 1124064, 2372080, 1931968, 217600, 268435456, 34992, 755200, 9902320, 43725920, 47659632
Offset: 1
Some solutions for n=3 k=4
.14..6..5.13...13.15..9.15...12..4.12.10....6..5.13.15....8.14..8.10
..7..6..5..6...13.15..9..1...12..4.12..4....6..5.13..5....8.14..8.14
..5..6.14..6....9.15..9.11....5..4.12.14...13..5..6..5....6.14..6.14
A223692
T(n,k)=Petersen graph (8,2) coloring a rectangular array: number of nXk 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.
Original entry on oeis.org
16, 48, 256, 144, 432, 4096, 432, 2304, 3888, 65536, 1296, 12384, 37008, 34992, 1048576, 3888, 66816, 363600, 595584, 314928, 16777216, 11664, 361440, 3788640, 10817856, 9594000, 2834352, 268435456, 34992, 1958400, 40075632, 223096320, 324280368, 154616832, 25509168, 4294967296
Offset: 1
Table starts:
16, 48, 144, 432, 1296, ...
256, 432, 2304, 12384, 66816, ...
4096, 3888, 37008, 363600, 3788640, ...
65536, 34992, 595584, 10817856, 223096320, ...
1048576, 314928, 9594000, 324280368, 13402129824, ...
16777216, 2834352, 154616832, 9762152544, 814399853760, ...
268435456, 25509168, 2492365968, 294583794768, 49817845241568, ...
4294967296, 229582512, 40180445568, 8901308553408, 3059068970173824, ...
Some solutions for n=3 k=4
..2..1..9..1....6..5..4..5....6.14..6.14....4..3..2.10....2..3..4..3
..2..1..9.11....4..5..6.14...12.14..8.14....2.10..2.10....4..3.11.13
..9.11..9.15....6..7..6.14....8..0..8..0....8.10..8.10...11.13.11..9
A223440
T(n,k)=Generalized Petersen graph (8,2) coloring a rectangular array: number of nXk 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
Original entry on oeis.org
16, 48, 48, 144, 256, 144, 432, 1376, 1376, 432, 1296, 7424, 14112, 7424, 1296, 3888, 40160, 147520, 147520, 40160, 3888, 11664, 217600, 1562176, 3099264, 1562176, 217600, 11664, 34992, 1180256, 16693920, 67182208, 67182208, 16693920, 1180256
Offset: 1
Some solutions for n=3 k=4
..7.15..7..0....1..0..7..0...10..8.14.12....8.14.12.10....9..1..9.11
..6..7..6..7....2..1..0..7...12.10.12.14...14.12.10..8....1..9.11..9
..7.15..7.15...10..2..1..0...14..8.14..8....8.14.12.14....9..1..9..1
A291873
Array read by antidiagonals: T(m,n) = number of connected dominating sets in the m X n king graph.
Original entry on oeis.org
1, 3, 3, 4, 15, 4, 4, 48, 48, 4, 4, 144, 336, 144, 4, 4, 432, 2192, 2192, 432, 4, 4, 1296, 14544, 29648, 14544, 1296, 4, 4, 3888, 96528, 405648, 405648, 96528, 3888, 4, 4, 11664, 640336, 5568336, 11293568, 5568336, 640336, 11664, 4
Offset: 1
Array begins:
======================================================================
m\n| 1 2 3 4 5 6 7
---|------------------------------------------------------------------
1 | 1 3 4 4 4 4 4...
2 | 3 15 48 144 432 1296 3888...
3 | 4 48 336 2192 14544 96528 640336...
4 | 4 144 2192 29648 405648 5568336 76414224...
5 | 4 432 14544 405648 11293568 315156544 8793207424...
6 | 4 1296 96528 5568336 315156544 17784998912 1001953789632...
7 | 4 3888 640336 76414224 8793207424 1001953789632 113637188081536...
...
Showing 1-4 of 4 results.
Comments