cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223594 Petersen graph (8,2) coloring a rectangular array: number of n X 3 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

144, 1504, 16192, 176224, 1931968, 21308000, 236213312, 2629972704, 29389265856, 329426847840, 3702023397952, 41690675717344, 470324275582912, 5313486488316000, 60099803562912832, 680431871048616672
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2013

Keywords

Comments

Column 3 of A223599.

Examples

			Some solutions for n=3:
..4..5..4....9..1..9....2.10..8....5..6..5....9.15..9....5.13..5....8.10.12
..4..5..4....0..1..2....8.10..8....5..4..5...13.11..9...11.13..5....2.10..2
..4..5..4....0..1..9....8.14..8....3..4..3...13.15..9...15.13..5....2.10.12
		

Crossrefs

Cf. A223599.

Formula

Empirical: a(n) = 23*a(n-1) - 153*a(n-2) + 217*a(n-3) + 258*a(n-4) - 456*a(n-5) - 104*a(n-6) + 192*a(n-7).
Empirical g.f.: 16*x*(9 - 113*x + 227*x^2 + 167*x^3 - 458*x^4 - 64*x^5 + 192*x^6) / (1 - 23*x + 153*x^2 - 217*x^3 - 258*x^4 + 456*x^5 + 104*x^6 - 192*x^7). - Colin Barker, Aug 21 2018

A223595 Petersen graph (8,2) coloring a rectangular array: number of nX4 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

432, 6736, 122608, 2372080, 47659632, 982848688, 20631729648, 438231627440, 9379905920496, 201754894742320, 4353130535839216, 94109174401819824, 2037032269494019568, 44126508340010479152, 956337724569802746864
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Column 4 of A223599

Examples

			Some solutions for n=3
.10.12.10.12...13.15.13..5...10..8.14.12....2..3..2.10...13.15..9.15
.10..8.14..8....9.11.13..5...10..8.14.12...11..3..2..3....9.11..9..1
.10..8.10.12....9.11.13.15....0..8.14..6....2..3..2.10...13.15..9..1
		

Formula

Empirical: a(n) = 45*a(n-1) -639*a(n-2) +2781*a(n-3) +4328*a(n-4) -42674*a(n-5) +32672*a(n-6) +131496*a(n-7) -190080*a(n-8) +31104*a(n-9)

A223596 Petersen graph (8,2) coloring a rectangular array: number of nX5 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

1296, 32768, 1124064, 43725920, 1807461152, 77164934624, 3355919411936, 147579242411936, 6534353238114336, 290550417324168160, 12953574232435565408, 578463167657721834784, 25858916789120236286624
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Column 5 of A223599

Examples

			Some solutions for n=3
..4.12..4.12..4....2.10.12.10..2....4.12.14.12.14....0..8.14.12..4
.10.12.10.12.14....2.10.12.10.12...10.12.10.12.14...10..8.14.12..4
.14..8.14.12.10....8.10..8.10..8...14..8.14.12.14...14.12.14.12..4
		

Formula

Empirical: a(n) = 130*a(n-1) -6594*a(n-2) +165720*a(n-3) -2048065*a(n-4) +6908942*a(n-5) +113207352*a(n-6) -1251611248*a(n-7) +1682835356*a(n-8) +35015368440*a(n-9) -160813753152*a(n-10) -226727555648*a(n-11) +2857884027456*a(n-12) -2954267687808*a(n-13) -19659496636672*a(n-14) +47658204103168*a(n-15) +38882496389120*a(n-16) -227511665233920*a(n-17) +120677010550784*a(n-18) +383689593430016*a(n-19) -527695273951232*a(n-20) -28874362912768*a(n-21) +441922152038400*a(n-22) -227408161538048*a(n-23) -76438468296704*a(n-24) +100031633817600*a(n-25) -21626502512640*a(n-26) -5816459460608*a(n-27) +2924872728576*a(n-28) -309237645312*a(n-29)

A223597 Petersen graph (8,2) coloring a rectangular array: number of nX6 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

3888, 156592, 9902320, 755683024, 63079247600, 5493636282928, 488183756623568, 43794253024609968, 3946123141338476848, 356301644338823049296, 32201832268642094966384, 2911632403841248652157872
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Column 6 of A223599

Examples

			Some solutions for n=3
..0..8.10..2.10.12....0..8.14..8.10.12....0..8.10..8.14..8....0..8.14..8.14..8
..0..8.10..8.10..8....0..8.14..8.10.12...10..8.10..8.14..6....0..8.14..8.14.12
.14..8.10..8.14.12...10..8..0..8.10..8...10..8.14.12.14.12...10..8.10.12.14.12
		

Formula

Empirical: a(n) = 262*a(n-1) -27461*a(n-2) +1495173*a(n-3) -43731134*a(n-4) +524673515*a(n-5) +6152511118*a(n-6) -282489565946*a(n-7) +2483912652446*a(n-8) +29421676125172*a(n-9) -697481373534648*a(n-10) +1458530010373832*a(n-11) +69956815192276352*a(n-12) -528297046730454848*a(n-13) -3086827662172494368*a(n-14) +47882553746367689088*a(n-15) +10965707122770907424*a(n-16) -2340559269540265031680*a(n-17) +5486927347986588608128*a(n-18) +69941648621456082536192*a(n-19) -297251623473934709486080*a(n-20) -1305157991750784855581696*a(n-21) +8440979797025067938063360*a(n-22) +14095302059293361615038464*a(n-23) -153743492804216781166567424*a(n-24) -47288441966639179842289664*a(n-25) +1913643253312062415283470336*a(n-26) -1003396550664482371964010496*a(n-27) -16679686771510732571704557568*a(n-28) +18533891488099072440625266688*a(n-29) +102246890008469545463403511808*a(n-30) -162991214909517474276797579264*a(n-31) -435115451422049349545104506880*a(n-32) +906569796239239890738717130752*a(n-33) +1237363099105353331896741789696*a(n-34) -3400152306679263954961728274432*a(n-35) -2123358478538635499265029308416*a(n-36) +8745123657405352931796413579264*a(n-37) +1356859111813262969537896120320*a(n-38) -15406674097594010873279553732608*a(n-39) +2559191145981943448863927959552*a(n-40) +18379877253737585156555959959552*a(n-41) -7469555760751370214782938382336*a(n-42) -14489346748589643282674394071040*a(n-43) +8912191332173092779417707479040*a(n-44) +7158796451658792959835985936384*a(n-45) -6111682650067493662711747706880*a(n-46) -1925452223339216616089800671232*a(n-47) +2511453223454919622878532993024*a(n-48) +124615282764101585541682692096*a(n-49) -591103371671157002715262877696*a(n-50) +66531760201729733686366044160*a(n-51) +68802887222583329394880675840*a(n-52) -14955428582870495402894819328*a(n-53) -2531485943906550622189518848*a(n-54) +713115117845179384429805568*a(n-55)

A223598 Petersen graph (8,2) coloring a rectangular array: number of nX7 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

11664, 755200, 90390720, 13959069888, 2400064408240, 430525083804688, 78546923445668960, 14429703592790084096, 2658520939017305600464, 490410636478840098415664, 90513619131741471092127136
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Column 7 of A223599

Examples

			Some solutions for n=3
..0..8.10..8.10..8.10....0..8..0..8.14.12.10....0..8.10..8.10.12.14
..0..8.10.12.14.12.10....0..8.10..8.14.12.14....0..8.10..8.10.12.10
..0..8.10.12..4.12.10....0..8.10..8.14..6.14....0..8..0..8.14..8.14
		

A223600 Petersen graph (8,2) coloring a rectangular array: number of 2 X n 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

256, 256, 1504, 6736, 32768, 156592, 755200, 3643024, 17608064, 85179184, 412367104, 1997306896, 9677417600, 46900761520, 227339596288, 1102103488912, 5343259128704, 25906912147504, 125615423519488, 609091866864400
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2013

Keywords

Comments

Row 2 of A223599.

Examples

			Some solutions for n=3:
..2..3..4...11..3..4....0..8.14...15..7..0...15..9..1....3..4..3....9.15..7
.11..3..2....4..3..4...10..8.10....0..7..0...11..9.15....5..4..5...13.15..9
		

Crossrefs

Cf. A223599.

Formula

Empirical: a(n) = 6*a(n-1) + 3*a(n-2) - 42*a(n-3) - 8*a(n-4) + 48*a(n-5) for n>6.
Empirical g.f.: 16*x*(16 - 80*x - 50*x^2 + 481*x^3 + 40*x^4 - 456*x^5) / ((1 + 2*x)*(1 - 8*x + 13*x^2 + 16*x^3 - 24*x^4)). - Colin Barker, Aug 21 2018

A223601 Petersen graph (8,2) coloring a rectangular array: number of 3Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

4096, 1376, 16192, 122608, 1124064, 9902320, 90390720, 827854448, 7658651360, 71165672752, 663933249024, 6209221918896, 58174002355232, 545677201489648, 5122736643803840, 48118345117470448, 452153378054341216
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Row 3 of A223599

Examples

			Some solutions for n=3
..7.15..9...10.12.14....5..6.14...12.14.12....6..7..0...13.15.13....7..0..8
.13.15.13...14.12.14....7..6..5...12..4.12...15..7..6...13.15..7....1..0..7
.13.11..9...14.12.14...14..6.14...12.14.12...15..7..6....7.15..9....1..0..7
		

Formula

Empirical: a(n) = 13*a(n-1) +3*a(n-2) -437*a(n-3) +544*a(n-4) +3614*a(n-5) -6064*a(n-6) -6480*a(n-7) +14240*a(n-8) -416*a(n-9) -7296*a(n-10) +2304*a(n-11) for n>12

A223602 Petersen graph (8,2) coloring a rectangular array: number of 4Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

65536, 7424, 176224, 2372080, 43725920, 755683024, 13959069888, 258174966416, 4850832343904, 91505981537072, 1733729781877920, 32909491571349680, 625534833011886880, 11898376530083012208, 226422016143905134464
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Row 4 of A223599

Examples

			Some solutions for n=3
..0..8..0....1..2.10....8.14..8....8.14..8....8.10..8....8..0..1....5..4..3
..0..1..0....1..2..3....8..0..8....8.10..8...12.14..8....7..0..8....3..4..3
..0..1..0...10..2..3....7..0..7....8..0..8....6.14..6....7..0..8....5..4..5
..9..1..2....1..2..1....7..0..8....8..0..8...12.14.12....1..0..7....5.13..5
		

Formula

Empirical: a(n) = 22*a(n-1) +146*a(n-2) -4241*a(n-3) -7021*a(n-4) +296069*a(n-5) +84524*a(n-6) -10098300*a(n-7) +2841988*a(n-8) +193753372*a(n-9) -109915280*a(n-10) -2243896688*a(n-11) +1623516032*a(n-12) +16219469440*a(n-13) -13091056384*a(n-14) -74162963712*a(n-15) +62602426368*a(n-16) +215343361024*a(n-17) -182965936128*a(n-18) -395412119552*a(n-19) +329698951168*a(n-20) +450438201344*a(n-21) -361766191104*a(n-22) -303199682560*a(n-23) +230835617792*a(n-24) +107843944448*a(n-25) -76487327744*a(n-26) -15032385536*a(n-27) +9663676416*a(n-28) for n>29

A223603 Petersen graph (8,2) coloring a rectangular array: number of 5Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

1048576, 40160, 1931968, 47659632, 1807461152, 63079247600, 2400064408240, 90938609732144, 3502184025729312, 135060601994290512, 5225267725656119568, 202291946619229066288, 7836871271932729361344, 303667249235629519756208
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Row 5 of A223599

Examples

			Some solutions for n=3
..0..8..0....4.12.10....4.12..4....4.12..4....4.12.14...12..4.12....4.12.10
.10..8..0....4.12..4...10.12.10....4..5..4...14.12.10...12..4.12...10.12.14
.10..8.10...10.12.10...10.12..4....4..5..6...14.12..4....3..4..5...14.12.14
..0..8.14...14.12..4....4.12.14...13..5..6...14.12.10....5..4..5...10.12.10
.14..8..0...10.12.10...10.12.10....6..5..4...14.12.10....5..4..5...14.12.10
		

Formula

Empirical: a(n) = 53*a(n-1) +374*a(n-2) -49281*a(n-3) +168337*a(n-4) +18953770*a(n-5) -135592765*a(n-6) -4018506722*a(n-7) +38351948598*a(n-8) +526425355509*a(n-9) -6247995788825*a(n-10) -44696544056917*a(n-11) +672018817036164*a(n-12) +2439625095672568*a(n-13) -51015250910957358*a(n-14) -74076479025445048*a(n-15) +2845371514245940944*a(n-16) -101151111776030008*a(n-17) -119745692885750334784*a(n-18) +136753869468449758704*a(n-19) +3872580812719758794448*a(n-20) -7900336393914849682208*a(n-21) -97415736700690808391520*a(n-22) +277181005424624672989888*a(n-23) +1918607026870809036988608*a(n-24) -7018687605134326176007808*a(n-25) -29583813723962062148089344*a(n-26) +136135267638358734615001088*a(n-27) +353449062429138527697512448*a(n-28) -2082673221451996449548128256*a(n-29) -3167294004420980789940391936*a(n-30) +25561447594742343434919616512*a(n-31) +19220624893813686502281330688*a(n-32) -254363255978716849635741302784*a(n-33) -43077889432320253843386531840*a(n-34) +2065610230705196722136007311360*a(n-35) -611869355376433765635530162176*a(n-36) -13735449605624441628196649566208*a(n-37) +9470460446052194237483947393024*a(n-38) +74832374656222369766059121049600*a(n-39) -78103053092167370004491719933952*a(n-40) -333196375373544832413565391470592*a(n-41) +462823435221855922222719588892672*a(n-42) +1204538345581769309443391701909504*a(n-43) -2121446352517105569942230355935232*a(n-44) -3489686115260065017811788294520832*a(n-45) +7736167933674865795576682917134336*a(n-46) +7896874136363657884330039883857920*a(n-47) -22708246137511575464946240959021056*a(n-48) -13177852194558039676440426361913344*a(n-49) +53846250174111770796979059918110720*a(n-50) +13519966957331356540752962533720064*a(n-51) -102966371980750600298466431733858304*a(n-52) +721316744394990987103801704448000*a(n-53) +157810807625828720650178914919907328*a(n-54) -34553697631065369192975193234997248*a(n-55) -191773787737447411912344991317360640*a(n-56) +77241888800091488728842956353568768*a(n-57) +181702526658392297572436797007331328*a(n-58) -104412959969421829864586835157581824*a(n-59) -130784502166988791077582920256323584*a(n-60) +98708628283267583534162228587528192*a(n-61) +68486312638776842376465639324778496*a(n-62) -67167764609290716861288017595203584*a(n-63) -23962558422689391133337137627267072*a(n-64) +32616881131758874199190445116882944*a(n-65) +4355396983589155226858169397411840*a(n-66) -10925261504311980936490504777891840*a(n-67) +244984704106217968259546474348544*a(n-68) +2362788076708829828961015586357248*a(n-69) -317326938329004163267124457897984*a(n-70) -290183829846002617980829418127360*a(n-71) +62205167167105726405236668497920*a(n-72) +14789431793187428965929713664000*a(n-73) -3965881151245791007623610368000*a(n-74) for n>75

A223604 Petersen graph (8,2) coloring a rectangular array: number of 6Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

16777216, 217600, 21308000, 982848688, 77164934624, 5493636282928, 430525083804688, 33412125075233264, 2632417918238601216, 207242362758169075664, 16354092687858619453040, 1290529367734515426273264
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Row 6 of A223599

Examples

			Some solutions for n=3
..0..8..0....0..8..0....0..8..0....0..8..0....0..8..0....0..8..0....0..8..0
..0..1..0...10..8.10...10..8.14....0..1..0...10..8.10....0..8.14....0..1..0
..9..1..2...14..8.10...14..8..0....0..7..0...10..8.10...14..8.14....2..1..9
..2..1..9...10..8.10....0..8.10...15..7..6....0..8..0....0..8.14....0..1..0
..2..1..0....0..8..0...10..8.10...15..7.15....0..8.14...10..8.10....2..1..9
..2..1..2...14..8..0....0..8.10....6..7..0....0..8..0....0..8.10....0..1..9
		
Showing 1-10 of 12 results. Next