Christoph Koutschan has authored 15 sequences. Here are the ten most recent ones:
A381554
Number of 2*n X 8 binary arrays with row sums 4 and column sums n, avoiding the patterns 010 and 101 in any row and column.
Original entry on oeis.org
1, 18, 324, 2776, 34586, 575270, 10061200, 194929482, 4115573632, 91947761368, 2167131637540, 53550929019486, 1376887129235964, 36670419524921146, 1007581514656491404, 28454294028011307236, 823234343053953729538
Offset: 0
A few solutions for n = 3 are:
0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0
0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1
A381553
Number of 2*n X 6 binary arrays with row sums 3 and column sums n, avoiding the patterns 010 and 101 in any row and column.
Original entry on oeis.org
1, 8, 64, 368, 2776, 25880, 251704, 2629080, 28964248, 331032312, 3907675376, 47392320240, 587548108400, 7421689479608, 95248568409312, 1239031994818680, 16306127772957216, 216760982171930144, 2906731043068293952, 39278080769921432856, 534346120254755625336
Offset: 0
A few solutions for n = 3 are:
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0
A381551
Number of 2*n X 4 binary arrays with row sums 2 and column sums n, avoiding the patterns 010 and 101 in any row and column.
Original entry on oeis.org
1, 4, 16, 64, 324, 1764, 10000, 58564, 350464, 2131600, 13133376, 81757764, 513294336, 3245580900, 20646241344, 132021769104, 848031024996, 5468890936356, 35392361925904, 229761144199876, 1495753923300484, 9762043084514704, 63858040015802256
Offset: 0
Here are 5 out of 16 solutions for n = 2:
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0
0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1
1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0
the remaining ones are obtained from these by reflecting, rotating, or exchanging 0 and 1.
- Christoph Koutschan, Table of n, a(n) for n = 0..1000
- Robert Dougherty-Bliss, Christoph Koutschan, Natalya Ter-Saakov, and Doron Zeilberger, The (Symbolic and Numeric) Computational Challenges of Counting 0-1 Balanced Matrices, Enumerative Combinatorics and Applications 5:2, Article #S2R14, 2025.
- Christoph Koutschan, Recurrence of order 10 with polynomial coefficients of degree 21.
A306420
Maximal Laman number among all minimally rigid graphs on n vertices.
Original entry on oeis.org
1, 1, 2, 4, 8, 24, 56, 136, 344, 880, 2288, 6180, 15536, 42780
Offset: 1
A graph with one vertex can be drawn in the plane in a unique way, and similarly the graph with two vertices connected by an edge. The unique minimally rigid graph with three vertices is the triangle, which admits two different embeddings (they differ by reflection). The unique minimally rigid graph with four vertices is a quadrilateral with one diagonal (i.e., we have five edges). By fixing the diagonal, each of the two triangles can be flipped independently, yielding four different embeddings.
- J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, J. Schicho, The number of realizations of a Laman graph, SIAM Journal on Applied Algebra and Geometry 2(1), pp. 94-125, 2018.
- I. Z. Emiris, E. P. Tsigaridas, A. E. Varvitsiotis, Algebraic methods for counting Euclidean embeddings of graphs. Graph Drawing: 17th International Symposium, pp. 195-200, 2009.
- G. Grasegger, C. Koutschan, E. Tsigaridas, Lower bounds on the number of realizations of rigid graphs, Experimental Mathematics, 2018 (doi: 10.1080/10586458.2018.1437851).
- Jose Capco, Nauty plugin to compute maximal Laman numbers.
- Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef Schicho, The number of realizations of a Laman graph (website).
- Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef Schicho, The number of realizations of a Laman graph, arXiv:1701.05500 [math.AG], 2017
- Ioannis Z. Emiris and Guillaume Moroz, The assembly modes of rigid 11-bar linkages, IFToMM 2011 World Congress, Guanajuato, Mexico, 2011; arXiv:1010.6214 [cs.RO], 2010-2017.
- Georg Grasegger, Explorations on the number of realizations of minimally rigid graphs, arXiv:2502.04736 [math.CO], 2025. See p. 24.
- Georg Grasegger, Christoph Koutschan, and Elias Tsigaridas, Lower bounds on the number of realizations of rigid graphs, arXiv:1710.08237 [math.CO], 2017-2018.
- Christoph Koutschan and Jose Capco, Latest C++ implementation [Broken link]
- G. Laman, On Graphs and Rigidity of Planar Skeletal Structures, J. Engineering Mathematics, Vol. 4, No. 4, 1970, pp. 331-340.
- H. Pollaczek-Geiringer, Über die Gliederung ebener Fachwerke, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 7, No. 1, 1927, pp. 58-72.
- Wikipedia, Laman graph
a(14) computed and added by
Jose Capco, Oct 02 2023
A273468
Number of minimally rigid graphs with n vertices constructible by Henneberg type I moves.
Original entry on oeis.org
1, 1, 1, 1, 3, 11, 61, 499, 5500, 75635, 1237670, 23352425, 498028767, 11836515526, 310152665647, 8883427573134
Offset: 1
A single vertex is rigid.
The graph consisting of two vertices joined by an edge is rigid.
A triangle is rigid and it is obtained by a single Henneberg type I move.
One more such move yields the only Laman graph with four vertices.
Also all three Laman graphs with five vertices can be constructed with type I moves. Therefore the first five entries of this sequence agree with A227117.
An example of a Laman graph that cannot be constructed using only Henneberg type I moves is the complete bipartite graph K(3,3).
-
Table[Length[H1LamanGraphs[n]], {n,3,7}] (* see link *)
-
gensparseg $n -H -u # With Laman plugin; see link.
A271671
Number of n-step excursions on the 8-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 112, 2688, 126000, 6316800, 364887040, 23038364160, 1562288430640, 112014905049600, 8399872737107712, 653454438359331840, 52412319029000899584, 4313870772211888183296, 362994066330649023029760
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(8,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..493
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7), this sequence (d = 8),
A271672 (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 8 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 8, Floor[(nmax - n)/2], 0]}], {d1, 3, 8}]; First /@ T
A271670
Number of n-step excursions on the 7-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 84, 1680, 66276, 2731680, 128704800, 6555265920, 355588928100, 20247799145280, 1198746727590384, 73266532153214400, 4598338364703822816, 295145004688715301120, 19311431876483926443264
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(7,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..524
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
- N. Zenine, S. Hassani, J-M. Maillard, Lattice Green Functions: the seven-dimensional face-centred cubic lattice, arXiv:1409.8615 [math-ph], 2014.
- N. Zenine, S. Hassani, J-M. Maillard, Lattice Green Functions: the seven-dimensional face-centred cubic lattice, Journal of Physics A: Mathematical and Theoretical 48 (2015), 035205.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6), this sequence (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 7 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 7, Floor[(nmax - n)/2], 0]}], {d1, 3, 7}]; First /@ T
A271673
Number of n-step excursions on the 10-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 180, 5760, 355860, 24226560, 1923670800, 169658496000, 16291413249300, 1674631754611200, 181989927592033680, 20709782925396364800, 2449425950787336166800, 299337868552812779289600, 37621311095831818078152000
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(10,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..449
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
Cf.
A002895,
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9), this sequence (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 10 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 10, Floor[(nmax - n)/2], 0]}], {d1, 3, 10}]; First /@ T
A271672
Number of n-step excursions on the 9-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 144, 4032, 219024, 12942720, 887135040, 67057079040, 5484251057040, 477369708721920, 43704143706754944, 4170816570389736960, 412062922497680790336, 41920366214226928716288, 4372905161028532447478016
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(9,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..469
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8), this sequence (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 9 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 9, Floor[(nmax - n)/2], 0]}], {d1, 3, 9}]; First /@ T
A271674
Number of n-step excursions on the 11-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 220, 7920, 548460, 42276960, 3818372800, 385303564800, 42556023409900, 5056698223684800, 638162986199119920, 84683717201322993600, 11723112517163129913600, 1682392957299926013542400, 249030549709148521993536000, 37864267170542400351711467520
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(11,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..433
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10), this sequence (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 11 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 11, Floor[(nmax - n)/2], 0]}], {d1, 3, 11}]; First /@ T
Comments