A271432
Number of n-step excursions on the 4-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 24, 192, 3384, 51840, 911040, 16369920, 307009080, 5902176000, 116083727424, 2323941903360, 47232891389376, 972252599205888, 20233078205573376, 425067670281526272, 9004456318854367800, 192148701659269774848
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(4,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..729
- D. Broadhurst, Bessel moments, random walks and Calabi-Yau equations.
- A. J. Guttmann, Lattice Green's functions in all dimensions, J. Phys. A: Math. Theor. 43 (2010), 305205.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices, arXiv:1108.2164 [math.CO], 2011-2013.
- C. Koutschan, Lattice Green's functions of the higher-dimensional face-centered cubic lattices, J. Phys. A: Math. Theor. 46(12) (2013), 125005.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), this sequence (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 4 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
a[0] = 1; a[1] = 0; a[2] = 24; a[3] = 192; a[4] = 3384; a[n_] := a[n] = (27648*(-4 + n)*(-3 + n)^2*(-2 + n)*(-8 + 35*n^2)*a[-5 + n] + 6912*(-3 + n)*(-2 + n)*(-132 + 62*n + 676*n^2 - 525*n^3 + 105*n^4)*a[-4 + n] + 144*(-2 + n)*(1440 - 352*n - 11430*n^2 + 15435*n^3 - 7350*n^4 + 1225*n^5)*a[-3 + n] + 8*(72 - 3738*n + 17065*n^2 - 29745*n^3 + 25150*n^4 - 10500*n^5 + 1750*n^6)*a[-2 + n] - (-1 + n)*(144 - 540*n + 487*n^2 + 151*n^3 - 315*n^4 + 105*n^5)*a[-1 + n])/(n^4*(27 - 70*n + 35*n^2)); Array[a, 30, 0]
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 4, Floor[(nmax - n)/2], 0]}], {d1, 3, 4}]; First /@ T
A271650
Number of n-step excursions on the 5-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 40, 480, 11880, 281280, 7506400, 210268800, 6166993000, 187069411200, 5833030976640, 186014056166400, 6044435339896800, 199561060892793600, 6679216425794140800, 226213441773789550080, 7741313040820500484200
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(5,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..629
- D. Broadhurst, Bessel moments, random walks and Calabi-Yau equations.
- A. J. Guttmann, Lattice Green's functions in all dimensions, J. Phys. A.: Math. Theor. 43 (2010) 305205
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
- C. Koutschan, Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices, arXiv:1108.2164 [math.CO], 2011-2013.
- C. Koutschan, Lattice Green's functions of the higher-dimensional face-centered cubic lattices, Journal of Physics A: Mathematical and Theoretical 46(12) (2013), 125005.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4), this sequence (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 5 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 5, Floor[(nmax - n)/2], 0]}], {d1, 3, 5}]; First /@ T
A271651
Number of n-step excursions on the 6-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 60, 960, 30780, 996480, 36560400, 1430553600, 59089923900, 2543035488000, 113129280527760, 5170796720812800, 241741903350301200, 11520044551208793600, 558061378022616811200, 27421336248833005839360
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(6,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..567
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
- C. Koutschan, Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices, arXiv:1108.2164 [math.CO], 2011-2013.
- C. Koutschan, Lattice Green's functions of the higher-dimensional face-centered cubic lattices, Journal of Physics A: Mathematical and Theoretical 46(12) (2013), 125005.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5), this sequence (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 6 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 6, Floor[(nmax - n)/2], 0]}], {d1, 3, 6}]; First /@ T
A271670
Number of n-step excursions on the 7-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 84, 1680, 66276, 2731680, 128704800, 6555265920, 355588928100, 20247799145280, 1198746727590384, 73266532153214400, 4598338364703822816, 295145004688715301120, 19311431876483926443264
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(7,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..524
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
- N. Zenine, S. Hassani, J-M. Maillard, Lattice Green Functions: the seven-dimensional face-centred cubic lattice, arXiv:1409.8615 [math-ph], 2014.
- N. Zenine, S. Hassani, J-M. Maillard, Lattice Green Functions: the seven-dimensional face-centred cubic lattice, Journal of Physics A: Mathematical and Theoretical 48 (2015), 035205.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6), this sequence (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 7 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 7, Floor[(nmax - n)/2], 0]}], {d1, 3, 7}]; First /@ T
A271672
Number of n-step excursions on the 9-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 144, 4032, 219024, 12942720, 887135040, 67057079040, 5484251057040, 477369708721920, 43704143706754944, 4170816570389736960, 412062922497680790336, 41920366214226928716288, 4372905161028532447478016
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(9,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..469
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8), this sequence (d = 9),
A271673 (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 9 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 9, Floor[(nmax - n)/2], 0]}], {d1, 3, 9}]; First /@ T
A271673
Number of n-step excursions on the 10-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 180, 5760, 355860, 24226560, 1923670800, 169658496000, 16291413249300, 1674631754611200, 181989927592033680, 20709782925396364800, 2449425950787336166800, 299337868552812779289600, 37621311095831818078152000
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(10,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..449
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
- C. Koutschan, Recurrence equation.
Cf.
A002895,
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9), this sequence (d = 10),
A271674 (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 10 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 10, Floor[(nmax - n)/2], 0]}], {d1, 3, 10}]; First /@ T
A271674
Number of n-step excursions on the 11-dimensional f.c.c. lattice.
Original entry on oeis.org
1, 0, 220, 7920, 548460, 42276960, 3818372800, 385303564800, 42556023409900, 5056698223684800, 638162986199119920, 84683717201322993600, 11723112517163129913600, 1682392957299926013542400, 249030549709148521993536000, 37864267170542400351711467520
Offset: 0
There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(11,2).
- Christoph Koutschan, Table of n, a(n) for n = 0..433
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green Functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, arXiv:1601.05657 [math-ph], 2016.
- S. Hassani, C. Koutschan, J-M. Maillard, N. Zenine, Lattice Green functions: the d-dimensional face-centred cubic lattice, d = 8, 9, 10, 11, 12, Journal of Physics A: Mathematical and Theoretical 49(16) (2016), 164003.
- C. Koutschan, Computations for higher-dimensional fcc lattices.
- C. Koutschan, Differential operator annihilating the generating function.
Cf.
A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice),
A271432 (d = 4),
A271650 (d = 5),
A271651 (d = 6),
A271670 (d = 7),
A271671 (d = 8),
A271672 (d = 9),
A271673 (d = 10), this sequence (d = 11).
-
nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 11 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
-
nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 11, Floor[(nmax - n)/2], 0]}], {d1, 3, 11}]; First /@ T
A292881
Number of n-step closed paths on the E6 lattice.
Original entry on oeis.org
1, 0, 72, 1440, 54216, 2134080, 93993120, 4423628160, 219463602120, 11341793393280
Offset: 0
The 2-step walks consist of hopping to one of the 72 minimal vectors of the E6 lattice and then back to the origin.
A292882
Number of n-step closed paths on the E7 lattice.
Original entry on oeis.org
1, 0, 126, 4032, 228690, 14394240, 1020623940, 78353170560, 6393827197170
Offset: 0
The 2-step walks consist of hopping to one of the 126 minimal vectors of the E7 lattice and then back to the origin.
A292883
Number of n-step closed paths on the E8 lattice.
Original entry on oeis.org
1, 0, 240, 13440, 1260720, 137813760, 17141798400, 2336327078400, 341350907713200
Offset: 0
The 2-step walks consist of hopping to one of the 240 minimal vectors of the E8 lattice and then back to the origin.
Showing 1-10 of 10 results.
Comments