A188833 Primes p such that p^2 is not in A188836.
23, 47, 53, 59, 79, 83, 107, 163, 167, 173, 179, 223, 227, 233, 257, 263, 269, 277, 283, 293, 317, 347, 353, 359, 367, 373, 383, 389, 401, 431, 439, 443, 457, 467, 479, 499, 503, 509, 557, 563, 569, 587, 593, 607, 643, 647, 653, 677, 683, 691, 719, 727, 733
Offset: 1
Keywords
Programs
-
Mathematica
A188550[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}]; A188794[n_] := Module[{k=2, a1=A188550[n]}, While[DivisorSum[n-k,1&, #>1&&Divisible[n-#,k]&] != a1, k++];k]; s={}; Do[p=Prime[n]; p2=p^2; If[aa[p2]^2 != p2, AppendTo[s,p]], {n, 1, 130}]; s (* Amiram Eldar, Feb 06 2019 after Jean-François Alcover at A188550 *)
Extensions
More terms from Amiram Eldar, Feb 06 2019