A188861 Number of n X 4 binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally.
16, 41, 68, 95, 122, 149, 176, 203, 230, 257, 284, 311, 338, 365, 392, 419, 446, 473, 500, 527, 554, 581, 608, 635, 662, 689, 716, 743, 770, 797, 824, 851, 878, 905, 932, 959, 986, 1013, 1040, 1067, 1094, 1121, 1148, 1175, 1202, 1229, 1256, 1283, 1310, 1337, 1364
Offset: 1
Keywords
Examples
Some solutions for 3 X 4: ..1..1..1..1....1..1..0..1....1..1..1..1....1..0..1..1....1..1..1..1 ..1..1..1..1....0..0..0..0....1..1..1..0....0..0..0..0....0..0..1..0 ..1..0..0..1....0..0..0..0....1..1..0..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188866.
Programs
-
Mathematica
Join[{16}, Range[41, 7000, 27]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
Formula
Empirical: a(n) = 27*n - 13 for n>1.
Conjectures from Colin Barker, Feb 28 2018: (Start)
G.f.: x*(16 + 9*x + 2*x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>3.
(End)
Comments