A188890 a(n) = 2^(n^2*2)*A004003(n).
1, 8, 9216, 1763704832, 55786539933761536, 291139753716719964894789632, 250571020614762113258116708732764160000, 35558299325468842404742419202148426327085023232000000, 831952537599396321581603077837672266625608464198409017861335832068096
Offset: 0
Keywords
References
- Levin, David A.; Peres, Yuval; and Wilmer, Elizabeth L.; Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2009.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
- Wikipedia, Chebyshev polynomials
Crossrefs
Cf. A004003.
Programs
-
Maple
f:=(m,n)-> 2^(m*n)*mul( mul( (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2); g:=(m,n)->round(evalf(f(m,n),300)); t1:=[seq(g(2*n,2*n),n=0..10)];
-
Mathematica
Table[Sqrt[Resultant[ChebyshevU[2*n, x], ChebyshevU[2*n, I*x], x]], {n, 0, 10}] (* Vaclav Kotesovec, Apr 14 2020 *)
-
PARI
{a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x), polchebyshev(2*n, 2, I*x)))} \\ Seiichi Manyama, Apr 14 2020
-
Python
from math import isqrt from sympy import resultant, chebyshevu, I from sympy.abc import x def A188890(n): return isqrt(resultant(chebyshevu(n<<1,x),chebyshevu(n<<1,I*x))) if n else 1 # Chai Wah Wu, Nov 08 2023
Formula
a(n)^2 = Resultant(U(2*n,x), U(2*n,i*x)), where U(n,x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 14 2020
a(n) ~ 2^(2*n^2 + 1) * (sqrt(2)-1)^(2*n+1) * exp(G*(2*n+1)^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020, updated Jan 03 2021
Comments