cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188899 Third row of array in A187617.

Original entry on oeis.org

1, 5, 36, 281, 2245, 18061, 145601, 1174500, 9475901, 76455961, 616891945, 4977472781, 40161441636, 324048393905, 2614631600701, 21096536145301, 170220478472105, 1373448758774436, 11081871650713781, 89415697915538545, 721463601671126161, 5821234309893001301, 46969478172465070500, 378980086070257592201, 3057856106268358639861
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2011

Keywords

Crossrefs

Bisection (odd part) of A005178. - Alois P. Heinz, Oct 28 2012

Programs

  • Maple
    ft:=(m,n)->
    2^(m*n/2)*mul( mul(
    (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
    gt:=(m,n)->round(evalf(ft(m,n),300));
    tt:=[seq(gt(4,2*n),n=0..10)];
    # second Maple program:
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|11|-25|11>>^n.
            <<1, 5, 36, 281>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 28 2012
  • Mathematica
    LinearRecurrence[{11, -25, 11, -1}, {1, 5, 36, 281}, 25] (* Jean-François Alcover, Jun 17 2018 *)
  • PARI
    x='x+O('x^200); Vec((1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1)) \\ Altug Alkan, Mar 23 2016

Formula

G.f.: (1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1). - Alois P. Heinz, Oct 28 2012