A188899 Third row of array in A187617.
1, 5, 36, 281, 2245, 18061, 145601, 1174500, 9475901, 76455961, 616891945, 4977472781, 40161441636, 324048393905, 2614631600701, 21096536145301, 170220478472105, 1373448758774436, 11081871650713781, 89415697915538545, 721463601671126161, 5821234309893001301, 46969478172465070500, 378980086070257592201, 3057856106268358639861
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (11,-25,11,-1).
Crossrefs
Bisection (odd part) of A005178. - Alois P. Heinz, Oct 28 2012
Programs
-
Maple
ft:=(m,n)-> 2^(m*n/2)*mul( mul( (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2); gt:=(m,n)->round(evalf(ft(m,n),300)); tt:=[seq(gt(4,2*n),n=0..10)]; # second Maple program: a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|11|-25|11>>^n. <<1, 5, 36, 281>>)[1, 1]: seq(a(n), n=0..30); # Alois P. Heinz, Oct 28 2012
-
Mathematica
LinearRecurrence[{11, -25, 11, -1}, {1, 5, 36, 281}, 25] (* Jean-François Alcover, Jun 17 2018 *)
-
PARI
x='x+O('x^200); Vec((1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1)) \\ Altug Alkan, Mar 23 2016
Formula
G.f.: (1-x)*(x^2-5*x+1)/(x^4-11*x^3+25*x^2-11*x+1). - Alois P. Heinz, Oct 28 2012