cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188911 Binomial convolution of the binomial coefficients bin(3n,n) (A005809).

Original entry on oeis.org

1, 6, 48, 438, 4356, 46056, 509106, 5814738, 68050116, 811240872, 9810384048, 119990105208, 1481115683754, 18421300391760, 230574816629310, 2901721280735838, 36688485233689668, 465774244616805624, 5934465567864915024
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]Binomial[3n-3k,n-k], {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k));
    vector(66,n,a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k).
E.g.f.: F(1/3,2/3;1/2,1;27*x/4)^2, where F(a1,a2;b1,b2;z) is a hypergeometric series.
Recurrence: 8*n^2 * (2*n-1)^2 * (9*n^3 - 54*n^2 + 102*n - 61)*a(n) = 24*(3*n-1)*(108*n^6 - 855*n^5 + 2628*n^4 - 4059*n^3 + 3380*n^2 - 1470*n + 264)*a(n-1) - 18*(3645*n^7 - 34992*n^6 + 138348*n^5 - 291843*n^4 + 352980*n^3 - 241794*n^2 + 84684*n - 11104)*a(n-2) + 2187*(n-2)^2 * (3*n-7)*(3*n-5)*(9*n^3 - 27*n^2 + 21*n - 4)*a(n-3). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 3^(3*n+1) / (Pi * n * 2^(n+1)). - Vaclav Kotesovec, Feb 25 2014