cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188917 Where powers of 2 occur in the union of squares and powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 37, 51, 70, 97, 135, 189, 264, 371, 521, 734, 1034, 1459, 2059, 2908, 4108, 5805, 8205, 11599, 16398, 23185, 32783, 46356, 65552, 92698, 131089, 185381, 262162, 370746, 524307, 741475, 1048596, 1482931, 2097173, 2965842, 4194326, 5931664, 8388631
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 14 2011

Keywords

Comments

A188915(a(n)) = A000079(n); A188915(A188916(n)) = A000290(n).

Crossrefs

Programs

  • Haskell
    a188917 n = a188917_list !! n
    a188917_list = filter ((== 1) . a209229. a188915) [0..]
    -- Reinhard Zumkeller, May 19 2015
    
  • Maple
    seq(floor((n+1)/2) + floor(2^(n/2)), n=0..100); # Robert Israel, Jun 13 2019
  • Mathematica
    Table[Floor[(n+1)/2] + Floor[2^(n/2)], {n, 0, 50}] (* Paolo Xausa, Oct 01 2024 *)
  • Python
    from math import isqrt
    def A188917(n): return (n+1>>1)+isqrt(1<Chai Wah Wu, Oct 01 2024

Formula

a(n) = floor((n+1)/2) + floor(2^(n/2)). - Robert Israel, Jun 13 2019