A188917 Where powers of 2 occur in the union of squares and powers of 2.
1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 37, 51, 70, 97, 135, 189, 264, 371, 521, 734, 1034, 1459, 2059, 2908, 4108, 5805, 8205, 11599, 16398, 23185, 32783, 46356, 65552, 92698, 131089, 185381, 262162, 370746, 524307, 741475, 1048596, 1482931, 2097173, 2965842, 4194326, 5931664, 8388631
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..6637
Crossrefs
Programs
-
Haskell
a188917 n = a188917_list !! n a188917_list = filter ((== 1) . a209229. a188915) [0..] -- Reinhard Zumkeller, May 19 2015
-
Maple
seq(floor((n+1)/2) + floor(2^(n/2)), n=0..100); # Robert Israel, Jun 13 2019
-
Mathematica
Table[Floor[(n+1)/2] + Floor[2^(n/2)], {n, 0, 50}] (* Paolo Xausa, Oct 01 2024 *)
-
Python
from math import isqrt def A188917(n): return (n+1>>1)+isqrt(1<
Chai Wah Wu, Oct 01 2024
Formula
a(n) = floor((n+1)/2) + floor(2^(n/2)). - Robert Israel, Jun 13 2019
Comments