cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A188985 Number of n X n binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

2, 16, 295, 10812, 852448, 144733702, 55080396536, 46897992282392, 90347796732080200, 391616769266718212264, 3836378499038367303867568, 84709934712009857654653118434, 4225407805631534612606491862152228
Offset: 1

Views

Author

R. H. Hardin Apr 15 2011

Keywords

Comments

Diagonal of A188992

Examples

			Some solutions for 3X3
..1..0..1....0..1..1....1..0..0....1..1..1....1..0..1....0..1..1....0..1..1
..1..0..1....1..1..0....1..1..0....1..0..1....0..1..0....0..1..1....0..0..0
..0..1..0....0..1..1....1..0..0....0..1..0....1..0..1....1..1..0....0..0..0
		

A188986 Number of n X 3 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

7, 49, 295, 1793, 10871, 65937, 399911, 2425505, 14710935, 89223345, 541148807, 3282123457, 19906418039, 120734483153, 732267120743, 4441275782369, 26936796718423, 163374456576241, 990882967287879, 6009807624994561
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2011

Keywords

Comments

Column 3 of A188992.

Examples

			Some solutions for 4 X 3:
..1..0..0....0..1..0....0..0..0....1..1..0....0..0..0....1..0..0....1..0..0
..1..1..1....0..1..0....0..1..0....1..0..0....0..1..1....1..0..1....1..0..0
..0..0..0....1..1..0....1..1..1....0..1..1....1..0..0....0..1..1....0..0..0
..0..1..1....1..1..0....0..0..0....0..1..1....1..0..0....1..0..0....0..1..1
		

Crossrefs

Cf. A188992.

Formula

Empirical: a(n) = 6*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4).
Empirical g.f.: x*(7 + 7*x - 6*x^2 + 2*x^3) / ((1 + x)*(1 - 7*x + 6*x^2 - 2*x^3)). - Colin Barker, May 01 2018

A188987 Number of n X 4 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 1256, 10812, 92532, 791388, 6768028, 57879084, 494973804, 4232940812, 36199474380, 309572453388, 2647417026444, 22640311889164, 193616539257612, 1655779498747404, 14159977029956108, 121093992068450316
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2011

Keywords

Comments

Column 4 of A188992.

Examples

			Some solutions for 3 X 4:
..1..0..1..1....1..1..0..0....1..0..1..1....1..0..1..1....1..0..1..1
..1..1..1..0....1..1..1..0....1..0..0..0....0..1..0..0....1..1..0..1
..0..1..1..0....0..1..0..1....1..0..0..0....1..1..0..0....1..1..0..1
		

Crossrefs

Cf. A188992.

Formula

Empirical: a(n) = 9*a(n-1) -36*a(n-3) +24*a(n-4) +36*a(n-5) -48*a(n-6) +16*a(n-7).
Empirical g.f.: 4*x*(1 + x - 2*x^2 + x^3)*(3 + 6*x - 10*x^2 + 4*x^3) / ((1 - x)*(1 - 8*x - 8*x^2 + 28*x^3 + 4*x^4 - 32*x^5 + 16*x^6)). - Colin Barker, May 01 2018

A188988 Number of n X 5 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

20, 400, 5304, 68064, 852448, 10682432, 133744640, 1674569728, 20965958400, 262498839552, 3286544012800, 41148269700608, 515185556441600, 6450238643180032, 80758433426035200, 1011113686205526528
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2011

Keywords

Comments

Column 5 of A188992.

Examples

			Some solutions for 3 X 5:
..1..1..1..1..0....1..0..1..1..1....1..1..1..1..1....1..1..1..1..0
..0..1..0..1..1....0..1..1..0..1....1..1..0..0..0....0..1..0..1..0
..0..1..0..0..0....1..0..0..0..0....0..1..1..1..1....0..1..1..0..0
		

Crossrefs

Cf. A188992.

Formula

Empirical: a(n) = 13*a(n-1) +4*a(n-2) -132*a(n-3) +60*a(n-4) +320*a(n-5) -240*a(n-6) for n>8.
Empirical g.f.: 4*x*(5 + 35*x + 6*x^2 + 38*x^3 - 500*x^4 - 480*x^5 + 1560*x^6 - 576*x^7) / ((1 - 2*x)*(1 + 2*x)*(1 - 13*x + 80*x^3 - 60*x^4)). - Colin Barker, May 01 2018

A188989 Number of nX6 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

33, 1089, 21952, 423606, 7844188, 144733702, 2668260348, 49183191266, 906546313088, 16709359181770, 307984617365928, 5676728147678902, 104632630902956668, 1928573464163110638, 35547186061830482980
Offset: 1

Views

Author

R. H. Hardin Apr 15 2011

Keywords

Comments

Column 6 of A188992

Examples

			Some solutions for 3X6
..0..1..1..0..1..1....1..1..0..1..0..1....1..1..1..1..0..1....1..0..1..1..0..0
..1..1..1..1..1..0....0..1..0..1..0..0....1..1..1..0..1..0....1..0..1..1..1..1
..0..1..0..1..1..1....0..1..0..1..1..1....1..1..0..1..0..1....1..0..1..0..0..0
		

Formula

Empirical: a(n) = 22*a(n-1) -47*a(n-2) -420*a(n-3) +1353*a(n-4) +490*a(n-5) -5593*a(n-6) +15840*a(n-7) -27360*a(n-8) +19496*a(n-9) -1828*a(n-10) -1376*a(n-11) -576*a(n-12) for n>14

A188990 Number of nX7 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

54, 2916, 89744, 2613530, 72609144, 2002277608, 55080396536, 1515192856324, 41677443278252, 1146393385863412, 31532963467317340, 867353027986156300, 23857611484854924172, 656232939488766364764, 18050493852378599289948
Offset: 1

Views

Author

R. H. Hardin Apr 15 2011

Keywords

Comments

Column 7 of A188992

Examples

			Some solutions for 3X7
..1..1..1..1..0..1..1....0..1..0..1..0..1..0....1..1..0..1..1..1..1
..0..1..1..1..1..1..1....0..1..1..1..0..1..1....0..1..1..1..0..1..0
..1..0..1..0..1..0..0....1..1..0..0..0..0..0....0..1..0..0..0..0..0
		

Formula

Empirical: a(n) = 35*a(n-1) -175*a(n-2) -1169*a(n-3) +8904*a(n-4) -5838*a(n-5) -78636*a(n-6) +390264*a(n-7) -535812*a(n-8) -1472012*a(n-9) +4073408*a(n-10) -2206456*a(n-11) +439232*a(n-12) -2614848*a(n-13) +1784672*a(n-14) +415680*a(n-15) +176768*a(n-16) -281856*a(n-17) -92160*a(n-18) for n>22

A188991 Number of nX8 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

88, 7744, 364088, 16035624, 669102268, 27666931400, 1139359314152, 46897992282392, 1930338232612032, 79452367353103728, 3270241701215854104, 134602347431894802032, 5540199508617476132752, 228033245642595584486776
Offset: 1

Views

Author

R. H. Hardin Apr 15 2011

Keywords

Comments

Column 8 of A188992

Examples

			Some solutions for 3X8
..0..1..1..0..1..1..0..0....0..1..1..1..0..0..0..0....0..1..0..1..1..1..0..1
..1..0..1..1..0..1..1..0....0..1..0..1..0..1..0..1....1..1..1..1..1..1..0..0
..0..1..0..0..0..0..0..0....0..1..1..0..0..0..0..0....0..1..0..1..1..0..0..0
		

Formula

Empirical: a(n) = 56*a(n-1) -580*a(n-2) -2483*a(n-3) +53864*a(n-4) -142516*a(n-5) -861420*a(n-6) +6667480*a(n-7) -9042400*a(n-8) -26734896*a(n-9) -222171104*a(n-10) +1190322000*a(n-11) -634672960*a(n-12) -756388160*a(n-13) -7962248640*a(n-14) +16790951424*a(n-15) +70954240*a(n-16) -8696557312*a(n-17) -17592663040*a(n-18) +21510688768*a(n-19) -693170176*a(n-20) -31580160*a(n-21) -1455161344*a(n-22) -2287714304*a(n-23) +990117888*a(n-24) +65208320*a(n-25) -314834944*a(n-26) +58982400*a(n-27) for n>32

A188993 Number of 3Xn binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

8, 64, 295, 1256, 5304, 21952, 89744, 364088, 1469600, 5913146, 23742816, 95207208, 381443400, 1527379724, 6113711024, 24465803130, 97891852484, 391642313112, 1566765146976, 6267573103552, 25071633380208, 100290042754410
Offset: 1

Views

Author

R. H. Hardin Apr 15 2011

Keywords

Comments

Row 3 of A188992

Examples

			Some solutions for 3X3
..0..1..0....1..0..0....1..0..0....0..1..1....1..1..1....1..0..0....1..0..0
..1..0..1....1..0..0....0..1..0....0..1..1....1..0..0....1..0..1....0..0..0
..0..1..0....0..0..0....1..1..0....0..1..1....1..1..0....0..1..1....0..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -14*a(n-2) -29*a(n-3) +90*a(n-4) +12*a(n-5) -159*a(n-6) +36*a(n-7) +106*a(n-8) -35*a(n-9) -22*a(n-10) +8*a(n-11) for n>14

A188994 Number of 4 X n binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

16, 256, 1793, 10812, 68064, 423606, 2613530, 16035624, 97883197, 595766564, 3617770796, 21938495472, 132905120076, 804648760664, 4869522949489, 29461013798230, 178208981945456, 1077853513894740, 6518619188201742
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2011

Keywords

Comments

Row 4 of A188992.

Examples

			Some solutions for 4 X 3
..1..1..1....1..0..0....1..0..0....0..1..0....0..1..0....1..0..1....1..0..1
..1..1..1....1..0..1....0..1..0....0..1..1....1..1..0....1..1..0....1..0..0
..1..1..0....0..1..1....1..1..1....1..1..0....1..1..0....1..1..0....1..0..1
..1..0..1....0..0..0....1..1..1....1..1..0....1..0..0....1..0..0....0..1..1
		

Crossrefs

Cf. A188992.

Formula

Empirical: a(n) = 13*a(n-1) -24*a(n-2) -309*a(n-3) +1139*a(n-4) +2904*a(n-5) -15708*a(n-6) -13388*a(n-7) +114908*a(n-8) +27510*a(n-9) -517862*a(n-10) +10696*a(n-11) +1525375*a(n-12) -199987*a(n-13) -2999240*a(n-14) +537335*a(n-15) +3938119*a(n-16) -825688*a(n-17) -3403810*a(n-18) +826898*a(n-19) +1870596*a(n-20) -531896*a(n-21) -607828*a(n-22) +201144*a(n-23) +99904*a(n-24) -37536*a(n-25) -5568*a(n-26) +2304*a(n-27) for n>30.

A188995 Number of 5Xn binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

32, 1024, 10871, 92532, 852448, 7844188, 72609144, 669102268, 6148530729, 56342169330, 515230781644, 4705003935324, 42922221924060, 391310478485712, 3565871249163397, 32485016339270612, 295879583057259120
Offset: 1

Views

Author

R. H. Hardin Apr 15 2011

Keywords

Comments

Row 5 of A188992

Examples

			Some solutions for 5X3
..1..1..0....0..1..0....1..0..1....1..1..0....0..1..1....1..0..1....0..1..0
..1..0..1....0..1..1....0..1..1....1..1..0....0..1..1....0..1..1....0..1..1
..0..0..0....1..1..1....0..1..1....0..1..1....1..1..0....0..1..1....1..0..1
..1..1..0....1..1..1....1..0..1....0..1..0....1..1..1....1..0..1....1..1..0
..0..1..0....1..1..1....1..1..1....1..1..1....1..0..0....0..1..0....1..0..0
		

Formula

Empirical: a(n) = 20*a(n-1) -26*a(n-2) -1758*a(n-3) +7884*a(n-4) +69274*a(n-5) -440875*a(n-6) -1621492*a(n-7) +13507948*a(n-8) +25172384*a(n-9) -274917184*a(n-10) -273994660*a(n-11) +4038604814*a(n-12) +2157309576*a(n-13) -44826838556*a(n-14) -12545085244*a(n-15) +386651971080*a(n-16) +55249249320*a(n-17) -2639477921890*a(n-18) -195034819700*a(n-19) +14437532484176*a(n-20) +622120688000*a(n-21) -63821395536740*a(n-22) -2013563540828*a(n-23) +229387235684075*a(n-24) +6204228280560*a(n-25) -673213717187734*a(n-26) -14708924451038*a(n-27) +1617830574782760*a(n-28) +18364193960110*a(n-29) -3187974181676823*a(n-30) +21749633597584*a(n-31) +5150273262854584*a(n-32) -172238338938872*a(n-33) -6807831142607116*a(n-34) +463812469077896*a(n-35) +7331518683699720*a(n-36) -804366669640684*a(n-37) -6387203643788164*a(n-38) +999955565998504*a(n-39) +4454231927925748*a(n-40) -921340393703952*a(n-41) -2449638785292204*a(n-42) +634177858926408*a(n-43) +1040892123443180*a(n-44) -324105066755064*a(n-45) -332359344974592*a(n-46) +120879015719960*a(n-47) +76775348266832*a(n-48) -31968235223312*a(n-49) -12165551078160*a(n-50) +5739648120864*a(n-51) +1221284783808*a(n-52) -653996805120*a(n-53) -67873787136*a(n-54) +42028015104*a(n-55) +1538030592*a(n-56) -1149603840*a(n-57) for n>61
Showing 1-10 of 13 results. Next