cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189003 Number of domino tilings of the 5 X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 8, 15, 95, 192, 1183, 2415, 14824, 30305, 185921, 380160, 2332097, 4768673, 29253160, 59817135, 366944287, 750331584, 4602858719, 9411975375, 57737128904, 118061508289, 724240365697, 1480934568960, 9084693297025, 18576479568193, 113956161827912
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2011

Keywords

Crossrefs

5th row of array A189006.
Bisections give: A003775 (even part), A006238 (odd part).

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|15|-32|15>>^iquo(n, 2, 'r').
            `if`(r=0, <<8, 1, 1, 8>>, <<1, 0, 1, 15>>))[3, 1]:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Product[2(2+Cos[2 j Pi/(n+1)]+Cos[k Pi/3]), {k, 1, 2}, {j, 1, n/2} ] // Round;
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 19 2018, after A099390 *)

Formula

G.f.: (x-1)*(1+x)*(x^4+x^3-6*x^2+x+1) / (-x^8+15*x^6-32*x^4+15*x^2-1).