A189043 For all permutations of [1..n]: number of distinct values taken by sum(k=1..n, k^2 * pi(k) ).
1, 2, 6, 23, 89, 232, 437, 747, 1191, 1806, 2631, 3709, 5087, 6816
Offset: 1
Examples
The permutations of 4 elements and the respective sums are [ 1 2 3 4 ] 100 [ 1 2 4 3 ] 93 [ 1 3 2 4 ] 95 [ 1 3 4 2 ] 81 [ 1 4 2 3 ] 83 [ 1 4 3 2 ] 76 [ 2 1 3 4 ] 97 [ 2 1 4 3 ] 90 [ 2 3 1 4 ] 87 [ 2 3 4 1 ] 66 [ 2 4 1 3 ] 75 [ 2 4 3 1 ] 61 [ 3 1 2 4 ] 89 [ 3 1 4 2 ] 75 // same as [ 2 4 1 3 ] [ 3 2 1 4 ] 84 [ 3 2 4 1 ] 63 [ 3 4 1 2 ] 60 [ 3 4 2 1 ] 53 [ 4 1 2 3 ] 74 [ 4 1 3 2 ] 67 [ 4 2 1 3 ] 69 [ 4 2 3 1 ] 55 [ 4 3 1 2 ] 57 [ 4 3 2 1 ] 50 All values except 75 are unique, so a(4) = 4!-1 = 23.
Crossrefs
Cf. A126972 (sum k*pi(k)).
Extensions
Corrected terms (error pointed out by Alois P. Heinz), Joerg Arndt, Apr 28 2011.
a(14) from Alois P. Heinz, Apr 28 2011