A189057 Numbers n for which phi(n)=sigma(n'), where phi is the Euler totient function, sigma is the sum of divisors and n' the arithmetic derivative of n.
2, 57, 175, 357, 381, 543, 777, 903, 2379, 3027, 6807, 25823, 47047, 74333, 82621, 136213, 153425, 163471, 194873, 230547, 257799, 259555, 265111, 269545, 285439, 289009, 302403, 305305, 311395, 354365, 416005, 484169, 569245, 718333, 755885, 781501, 1012505
Offset: 1
Keywords
Examples
phi(57)=36. 57'=22 and sigma(22)=36 phi(1012505)=725760. 1012505'=310156 and sigma(310156)=725760
Links
- Donovan Johnson, Table of n, a(n) for n = 1..300
Programs
-
Maple
with(numtheory); P:=proc(i) local f, n, p, pfs; for n from 1 by 1 to i do pfs:=ifactors(n)[2]; f:=n*add(op(2, p)/op(1, p), p=pfs); if phi(n)=sigma(f) then print(n); fi; od; end: P(1000000)