cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A190403 Number n for which sigma(n)=sigma(n'), where sigma is the sum of divisors and n' the arithmetic derivative of n.

Original entry on oeis.org

4, 27, 60, 84, 132, 140, 204, 220, 228, 260, 270, 340, 372, 378, 444, 492, 564, 572, 580, 620, 644, 702, 708, 740, 804, 812, 820, 836, 860, 884, 918, 945, 1026, 1068, 1180, 1242, 1276, 1284, 1292, 1308, 1316, 1364, 1420, 1460, 1484, 1485, 1508, 1564, 1566
Offset: 1

Views

Author

Paolo P. Lava, May 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f,n,p,pfs;
    for n from 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2,p)/op(1,p),p=pfs);
        if sigma(n)=sigma(f) then print(n); fi;
    od;
    end:
    P(1000);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 2000, n++, If[DivisorSigma[1, n] == DivisorSigma[1, d[n]], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 22 2015 *)
  • Python
    from sympy import factorint, totient
    A190402 = [n for n in range(2,10**3) if totient(int(sum([n*e/p for p,e in factorint(n).items()]))) == totient(n)] # Chai Wah Wu, Aug 21 2014
Showing 1-1 of 1 results.