cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190402 Number n for which phi(n) = phi(n'), where phi is the Euler totient function and n' the arithmetic derivative of n.

Original entry on oeis.org

2, 4, 8, 14, 20, 27, 45, 52, 75, 148, 195, 244, 292, 364, 628, 729, 772, 1108, 1196, 1215, 1252, 1406, 1552, 1588, 1684, 1701, 1828, 2164, 2452, 2644, 2692, 2924, 2932, 3028, 3125, 3508, 3825, 3982, 3988, 4372, 4462, 4612, 4804, 4852, 4948, 5284, 5524
Offset: 1

Views

Author

Paolo P. Lava, May 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f,n,p,pfs;
    for n from 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2,p)/op(1,p),p=pfs);
        if phi(n)=phi(f) then print(n); fi;
    od;
    end:
    P(1000);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 6000, n++, If[EulerPhi[n] == EulerPhi[d[n]], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 22 2015 *)

A209870 Numbers n for which tau(n) = tau(n'), where tau is the number of divisors of n and n' the arithmetic derivative of n.

Original entry on oeis.org

4, 15, 21, 26, 27, 28, 33, 38, 48, 50, 57, 62, 69, 72, 74, 80, 85, 93, 99, 106, 129, 133, 134, 145, 156, 166, 176, 177, 178, 200, 205, 207, 213, 217, 218, 226, 237, 249, 253, 254, 262, 265, 276, 278, 308, 309, 314, 348, 362, 364, 368, 380, 393, 398, 410, 417
Offset: 1

Views

Author

Paolo P. Lava, Mar 15 2012

Keywords

Examples

			Divisors of 26 are four: 1, 2, 13 and 26. Arithmetic derivative of 26 is 15 and its divisors are four: 1, 3, 5 and 15.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A209870:=proc(n)
    local a,i,p,pfs;
    for i from 1 to n do
      pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs);
      if tau(a)=tau(i) then print(i); fi;
    od; end:
    A209870(1000);

A189057 Numbers n for which phi(n)=sigma(n'), where phi is the Euler totient function, sigma is the sum of divisors and n' the arithmetic derivative of n.

Original entry on oeis.org

2, 57, 175, 357, 381, 543, 777, 903, 2379, 3027, 6807, 25823, 47047, 74333, 82621, 136213, 153425, 163471, 194873, 230547, 257799, 259555, 265111, 269545, 285439, 289009, 302403, 305305, 311395, 354365, 416005, 484169, 569245, 718333, 755885, 781501, 1012505
Offset: 1

Views

Author

Paolo P. Lava, May 17 2011

Keywords

Examples

			phi(57)=36. 57'=22 and sigma(22)=36
phi(1012505)=725760. 1012505'=310156 and sigma(310156)=725760
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f, n, p, pfs;
    for n from 1 by 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2, p)/op(1, p), p=pfs);
        if phi(n)=sigma(f) then print(n); fi;
    od;
    end:
    P(1000000)
Showing 1-3 of 3 results.