cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A190403 Number n for which sigma(n)=sigma(n'), where sigma is the sum of divisors and n' the arithmetic derivative of n.

Original entry on oeis.org

4, 27, 60, 84, 132, 140, 204, 220, 228, 260, 270, 340, 372, 378, 444, 492, 564, 572, 580, 620, 644, 702, 708, 740, 804, 812, 820, 836, 860, 884, 918, 945, 1026, 1068, 1180, 1242, 1276, 1284, 1292, 1308, 1316, 1364, 1420, 1460, 1484, 1485, 1508, 1564, 1566
Offset: 1

Views

Author

Paolo P. Lava, May 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f,n,p,pfs;
    for n from 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2,p)/op(1,p),p=pfs);
        if sigma(n)=sigma(f) then print(n); fi;
    od;
    end:
    P(1000);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 2000, n++, If[DivisorSigma[1, n] == DivisorSigma[1, d[n]], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 22 2015 *)
  • Python
    from sympy import factorint, totient
    A190402 = [n for n in range(2,10**3) if totient(int(sum([n*e/p for p,e in factorint(n).items()]))) == totient(n)] # Chai Wah Wu, Aug 21 2014

A209870 Numbers n for which tau(n) = tau(n'), where tau is the number of divisors of n and n' the arithmetic derivative of n.

Original entry on oeis.org

4, 15, 21, 26, 27, 28, 33, 38, 48, 50, 57, 62, 69, 72, 74, 80, 85, 93, 99, 106, 129, 133, 134, 145, 156, 166, 176, 177, 178, 200, 205, 207, 213, 217, 218, 226, 237, 249, 253, 254, 262, 265, 276, 278, 308, 309, 314, 348, 362, 364, 368, 380, 393, 398, 410, 417
Offset: 1

Views

Author

Paolo P. Lava, Mar 15 2012

Keywords

Examples

			Divisors of 26 are four: 1, 2, 13 and 26. Arithmetic derivative of 26 is 15 and its divisors are four: 1, 3, 5 and 15.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A209870:=proc(n)
    local a,i,p,pfs;
    for i from 1 to n do
      pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs);
      if tau(a)=tau(i) then print(i); fi;
    od; end:
    A209870(1000);

A260961 Numbers n such that phi(n') = phi(n)', where phi(n) is the Euler totient function of n and n' is the arithmetic derivative of n.

Original entry on oeis.org

1, 3, 8, 28, 32, 36, 40, 50, 56, 80, 128, 176, 184, 228, 324, 368, 448, 472, 504, 560, 576, 664, 704, 1328, 1336, 1512, 1620, 1686, 1816, 2048, 2544, 2580, 2864, 3008, 3064, 3540, 3776, 3832, 3888, 4024, 5184, 5744, 6048, 6904, 7096, 7128, 8192, 9216, 10264, 10456
Offset: 1

Views

Author

Paolo P. Lava, Aug 06 2015

Keywords

Examples

			Arithmetic derivative of 56 is 92 and phi(92) = 44, while phi(56) = 24 and the arithmetic derivative of 24 is 44.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=phi(n);
    c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]);
    if phi(a)=c then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range@ 12000, EulerPhi@ f@ # == f@ EulerPhi@ # &] (* Michael De Vlieger, Aug 07 2015, after Michael Somos at A003415 *)

A189057 Numbers n for which phi(n)=sigma(n'), where phi is the Euler totient function, sigma is the sum of divisors and n' the arithmetic derivative of n.

Original entry on oeis.org

2, 57, 175, 357, 381, 543, 777, 903, 2379, 3027, 6807, 25823, 47047, 74333, 82621, 136213, 153425, 163471, 194873, 230547, 257799, 259555, 265111, 269545, 285439, 289009, 302403, 305305, 311395, 354365, 416005, 484169, 569245, 718333, 755885, 781501, 1012505
Offset: 1

Views

Author

Paolo P. Lava, May 17 2011

Keywords

Examples

			phi(57)=36. 57'=22 and sigma(22)=36
phi(1012505)=725760. 1012505'=310156 and sigma(310156)=725760
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f, n, p, pfs;
    for n from 1 by 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2, p)/op(1, p), p=pfs);
        if phi(n)=sigma(f) then print(n); fi;
    od;
    end:
    P(1000000)

A260962 Numbers k such that phi(k) = phi'(k'), where phi(k) is the Euler totient function of k and k' is the arithmetic derivative of k.

Original entry on oeis.org

8, 26, 122, 351, 31195, 47201, 51243, 118265, 300985, 472491, 672147, 673863, 850969, 931383, 1440625, 3000927, 3669213, 3740755, 4688645, 4822143, 4864175, 11224565, 13897079, 13949343, 16362857, 16744355, 18844265, 19536205, 35580099, 38656975, 42056215, 46294105
Offset: 1

Views

Author

Paolo P. Lava, Aug 06 2015

Keywords

Examples

			Arithmetic derivative of 26 is 15, phi(15) = 8 and 8' = 12 that is equal to phi(26).
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,b,n,p;
    for n from 1 to q do a:=phi(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]));
    b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]);
    if phi(n)=b then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range@ 100000, f@ EulerPhi@ f@ # == EulerPhi@ # &] (* Michael De Vlieger, Aug 07 2015, after Michael Somos at A003415 *)

A352331 Numbers k for which phi(k) = phi(k''), where phi is the Euler totient function (A000010) and k'' the second arithmetic derivative of k (A068346).

Original entry on oeis.org

4, 27, 104, 260, 296, 405, 525, 740, 910, 945, 1460, 1806, 1818, 2504, 3125, 3140, 3176, 3656, 3860, 4563, 5540, 6056, 6930, 7016, 8420, 8636, 9224, 10820, 12573, 13256, 14024, 15140, 15464, 15944, 16136, 19940, 20456, 21690, 21860, 22856, 23336, 24020, 24260
Offset: 1

Views

Author

Marius A. Burtea, Apr 09 2022

Keywords

Comments

If m is a term in A051674, then m'' = m, phi(m'') = phi(m) so the sequence is infinite.
If p > 3 is at the intersection of A023208 and A005383 then m = 8*p is a term. Indeed, m'' = (8*p)'' = (12*p + 8)' = (4*(3*p + 2))' = 12*(p + 1) and phi(m'') = phi(12*(p + 1)) = phi(24*(p + 1)/2) = 8*(p - 1)/2 = 4*(p - 1) and phi(m) = phi(8*p) = 4*(p - 1).
If p > 5 is at the intersection of A023221 and A005383 then m = 20*p is a term. Indeed, m'' = (20*p)'' = (24*p + 20)' = (4*(6*p + 5))' = 4*(6*p + 6) = 24*(p + 1) and phi(m'') = phi(24*(p + 1)) = phi(48*(p + 1)/2) = 16*(p - 1)/2 = 8*(p - 1) and phi(m) = phi(20*p) = 8*(p - 1).

Examples

			phi(4'') = phi(4) because 4'' = 4, so 4 is a term.
phi (27'') = phi(27) because 27'' = 27, so 27 is a term.
phi(104'') = phi(164') = phi(168) = phi (8*3*7) = 4*2*6 = 48 and phi(104) = phi(8*13) = 4*12 = 48, so 104 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [2..24300]| not IsPrime(n) and EulerPhi(n) eq EulerPhi(Floor(f(Floor(f(n))))) ];
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[25000], EulerPhi[#] == EulerPhi[d[d[#]]] &] (* Amiram Eldar, Apr 10 2022 *)

A359330 Composite k for which phi(k) + phi(k') = k, where k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

4, 6, 8, 10, 12, 18, 22, 28, 34, 58, 60, 72, 82, 84, 88, 108, 112, 118, 124, 132, 140, 142, 202, 204, 214, 216, 220, 228, 260, 274, 298, 324, 340, 358, 372, 382, 394, 444, 454, 478, 492, 508, 538, 562, 564, 572, 580, 620, 622, 644, 694, 708, 740, 804, 812, 820
Offset: 1

Views

Author

Marius A. Burtea, Jan 28 2023

Keywords

Comments

Composite numbers k for which phi(k') = cototient(k) (A051953).
The sequence refers only to composite numbers because for any prime number p we obtain phi(p) + phi(p') = p - 1 + phi(1) = p.
If p = 2^k - 1 is a Mersenne prime (A000668), then m = 4*p is a term. Indeed, m' = 4*(p + 1) = 4*2^k = 2^(k + 2) and phi(m) + phi(m') = phi(4*p) + phi(2^(k + 2)) = 2*(p-1) + 2^(k+1) = 2*(p - 1) + 2*(p + 1) = 4*p = m, so m is a term.
If p, q and p*q + p + q are prime numbers then m = 4*p*q is a term. Indeed, m'= 4*(p*q + p + q) and phi(m) + phi(m') = phi(4*p*q) + phi(4*(p*q + p + q)) = 2*(p - 1)*(q - 1) + 2*(p*q + p + q - 1) = 4*p*q.
If p is in A023221 then m = 20*p is a term. Indeed, m' = 24*p + 20 = 4*(6*p + 5) and phi(m) + phi(m') = phi(20*p) + phi(4*(6*p + 5)) = 8*(p-1) + 2*(6*p + 4) = 20*p = m, so m is a term.

Examples

			If m = 4 then m' = 4 and phi(m) + phi(m') = phi(4) + phi(4) = 2 + 2 = 4, so 4 is a term.
If m = 8 then m' = 12 and phi(m) + phi(m') = phi(8) + phi(12) = 4 + 4 = 8, so 8 is a term.
14 is not a term because phi(14) + phi(14') = 6 + phi(9) = 6 + 6 = 12 <> 14.
		

Crossrefs

Programs

  • Magma
    f:=func;  [n:n in [2..850]|not IsPrime(n) and n eq EulerPhi(Floor(f(n))) + EulerPhi(n)];
  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    q:= n-> not isprime(n) and (p-> p(n)+p(d(n))=n)(numtheory[phi]):
    select(q, [$4..1000])[];  # Alois P. Heinz, Jan 29 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[1000], CompositeQ[#] && EulerPhi[#] + EulerPhi[d[#]] == # &] (* Amiram Eldar, Jan 29 2023 *)
Showing 1-7 of 7 results.